• Title/Summary/Keyword: EDCs

Search Result 121, Processing Time 0.032 seconds

Changes of Survival, Growth and Oxygen Consumption in the Oliver Flounder, Paralichthys olivaceus Exposed to TBT (TBT의 노출에 따른 넙치, Paralichthys olivaceus의 생존, 성장 및 산소소비의 변화)

  • 강주찬;황운기;지정훈
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • This study was carried out to examine the effects of bis (tribytyltin)oxide (TBT), endocrine disrupting compounds (EDCs). on the changes of survival, growth and oxygen consumption rate in the oliver flounder, Paralichthys olivaceus. Oliver Flounders were exposed to sublethal concentration of TBT (0, 1.67, 3.20, 6.30 and 12.50 $\mu\textrm{g}$/L) during 6 weeks. Survival rate was decreased in a concentration and exposure period-dependent way and suddenly the reduction of more than 20% occurred at TBT concentration greater than 3.20 $\mu\textrm{g}$/L. after exposure 6 weeks. Growth rate and feed efficiency significantly decreased at concentration greater than 3.20 $\mu\textrm{g}$/L. Oxygen consumption rate was also decreased in a concentration-dependent way and significantly decreased to 17,48 and 67% than that of the control at the TBT concentration of 3.20, 6.32 and 12.50 $\mu\textrm{g}$/L, respectively. This study revealed that high TBT concentration ($\geq$3.20 $\mu\textrm{g}$/L) reduced growth and oxygen consumption rates of the juvenile oliver flounder suggesting potential influence on the natural mortality of Paralichthys olivaceus in the coastal areas.

Combined Isobutoxycarbonylation and tert-Butyldimethylsilylation for the GC/MS-SIM Detection of Alkylphenols, Chlorophenols and Bisphenol A in Mackerel Samples

  • Kim, Hyub;Hong, Jong-Ki;Kim, Yong-Hwa;Kim, Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.697-705
    • /
    • 2003
  • The alkylphenols, chlorophenols, and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) followed by two work-up methods for comparison: isobutoxycarbonyl (isoBOC) derivatization and tert-butyldimethylsilyl (TBDMS) derivatization. Eleven endocrine disrupting chemicals (EDCs) of phenols in biological samples were extracted with acetonitrile and then the acetonitrile layer underwent freezing filtration 6$0^{\circ}C$ for 2 hours. Solid-phase extraction (SPE) was used with XAD-4 and subsequent conversion to isoBOC or TBDMS derivatives for sensitivity analysis with the GC/MS-SIM mode. For isoBOC derivatization and TBDMS derivatization the recoveries were 92.3∼150.6% and 93.8∼108.3%, the method detection limits (MDLs) of bisphenol A for SIM were 0.062 $\mu$ g/kg and 0.010 $\mu$ g/kg, and the SIM responses were linear with the correlation coefficient varying by 0.9755∼0.9981 and 0.9908∼0.9996, respectively. When these methods were applied to mackerel samples, the concentrations of the 11 phenol EDCs were below the MDL.

Persistent Organic Pollution and Arsenic Contamination in Asia Pacific Water: Case Study of Emerging Environmental Problems in Vietnam

  • Pham, Viet.H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.79-89
    • /
    • 2007
  • This paper provides a comprehensive overview of the present status of several environmental problems caused by emerging toxic substances such as persistent organic pollutants (POPs), endocrine disrupting chemicals (EDCs), and arsenic in various environmental media in Vietnam. Monitoring data reported during the 1990s demonstrated elevated contamination of DDTs in most of these compartments in Vietnam. Studies in frame of the Asia-Pacific Mussel Watch Program revealed that fish, mussels and resident birds from Vietnam contained higher concentrations of DDTs as compared to other countries in region, suggesting the role of Vietnamese environment as a significant emission source of DDT in the Southeast Asian region. The estimated dietary intakes of PCBs and DDTs for Vietnamese were relatively high among Asian developing countries, suggesting potential risk for humans posed by thesechemicals. Widespread contamination of some endocrine active compounds such as alkylphenols and phthalates was observed at various sites along the coasts of northern and middle Vietnam. The presence of significant source of bisphenol-A along Red River estuary was revealed with the concentrations comparable to those reported for developed nations. A case study on seasonal variation of alkylphenols and phthalates in surface water of river delta and estuary of north and middle Vietnam indicated the differences in distribution of these compounds between dry and rainy seasons. Higher concentrations of alkylphenols and phthalates were found in dry season in estuary; while the contrasting pattern was observed in the river delta, showing elevated residues in rainy season. This result suggests the different behavior of alkylphenols and phthalates in river delta and coastal environment. From ecotoxicological perspectives, concentrations of bis-phenol A and di(2-ethylhexyl)phthalates [DEHP] in surface water from some locations in Vietnam exceeded the guideline values for Ecotoxicological Effects and the Environmental Risk Limit, respectively, suggesting potential for toxic implications on aquatic wildlife. Widespread and elevated arsenic contamination was discovered inour recent surveys in groundwater in a large area of suburban areas of Hanoi city, the capital of Vietnam. The most recent investigation in 4 villages showed about more than 50 % of groundwater samples contained As concentrations exceeding 50 g/L (the WHO and Vietnamese standard). In particular, in Son Dong villages, 58 % of samples analyzed contained As concentrations higher than 200 g/L. Good correlations were found in As concentrations in water and hair and urine of peoples in corresponding families, suggesting the chronic exposure to As by people living in As-contaminated ground water areas. In Son Dong village, As levels in hair (mean: 1.7 mg/kg dry wt) and urine (g/g creatinine) exceeding the reference values recommended by WHO, suggesting potential for human risk posed by long term accumulation of As in human body. Future studies should be focused on the time trends of POPs and EDCs in biota in Vietnam in order to predict future trend of contamination and to reveal new clues for understanding possible toxic impacts on aquatic organisms. The issues of arsenic contamination in groundwater and their chronic toxic implications on human health should be systematically investigated in the future.

  • PDF

Effects of Estradiol-$17{\beta}$ and Nonylphenol on mRNA Expression of Estrogen Receptor-related Receptor $\beta$ Like 1 and Early Embryogensis in Sea Urchin, Strongylocentrotus nudus (Estradiol-$17{\beta}$와 Nonylphenol이 둥근성게(Strongylocentrotus nudus) 초기 배발생과 Estrogen Receptor-related Receptor $\beta$ Like 1 mRNA 발현에 미치는 영향)

  • Jung, Yu-Jung;Maeng, Se-Joeng;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • The estrogens and estrogenic endocrine disrupting chemicals(EDCs) function through a steroid nuclear receptor-mediated process and subsequently regulate the transcription of mRNA for a number of target proteins. The estrogen receptor-related receptors(ERRs), which are structurally similar to estrogen receptors, are members of orphan nuclear receptor in the nuclear receptor superfamily and their functions are known to be involved in the formation of extra-embryonic ectoderm. To investigate effects of EDCs on early embryogenesis and ERR gene expression in marine invertebrates, we examined morphological changes and the mRNA expression of $ERR{\beta}$ like 1 in sea urchin Strongylocentrotus nudus exposed to estradiol-$17{\beta}(E_2)$ or nonylphenol(NP). The $E_2$ and NP-exposed embryos showed a delayed development compared to control embryos. Furthermore, they showed abnormal embryonic developments at late stages, i.e., blastular, gastrula and plutei stages. The mRNA level of $ERR{\beta}$ like 1 at the gastrula stage was significantly lower in $E_2$ and NP-exposed embryos than those of control group. These results suggest that NP and $E_2$ are potent chemicals causing abnormal embryonic development of S. nudus through at least in part down-regulated $ERR{\beta}$ like 1.

  • PDF

Effects on EDC-like farming chemicals in aquatic Organism (환경생물에 대한 내분비교란물질 의심 농약의 영향)

  • Kim, Hyun-Woo;Park, Kun-Ho;Park, Jin-Hong;Jin, Hua;Kim, Joon-Seong;Eu, Gook-Jong;Cho, Hyun-Sun;Kang, Ga-Mi;Lee, Myung-Sung;Song, Byung-Hoon;Shin, Jin-Sup;Cho, Maing-Haing
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.188-197
    • /
    • 2003
  • Endocrine disrupting chemicals (EDCs) can alter hormone regulation that control reproductive system in animals. The effects of endosulfan, molinate, and alachlor that suspected to have examined disruption EDCs effect on a fish species of interest, Xiphophorus helleri (swordtail fish), were studied using vitellogenin (Vtg) and aromatase as diagnostic biomarkers. Induction of Vtg proteins was detected by RT-PCR in male fish treated with alachlor, and mixture of endosulfan and molinate in dose response manner. Also, induction of aromatase was detected by RT-PCR in male fish treated with alachlor, endosulfan, and mixture of endosulfan and molinate in sinlilar manner. In this study, swordtail fish exposed to endosulfan or molinate individually did not show any adverse effects. However, Vtg and aromatase expressions and apoptosis were detected in swordtail. fish exposed to the mixture of endosulfan and molinate. These results suggested that low concentrations of mixture of molinate and endosulfan individually do not affect swordtail fish, but may influence genital system, and induce apoptosis.

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

A Design of the Emergency-notification and Driver-response Confirmation System(EDCS) for an autonomous vehicle safety (자율차량 안전을 위한 긴급상황 알림 및 운전자 반응 확인 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2021
  • Currently, the autonomous vehicle market is commercializing a level 3 autonomous vehicle, but it still requires the attention of the driver. After the level 3 autonomous driving, the most notable aspect of level 4 autonomous vehicles is vehicle stability. This is because, unlike Level 3, autonomous vehicles after level 4 must perform autonomous driving, including the driver's carelessness. Therefore, in this paper, we propose the Emergency-notification and Driver-response Confirmation System(EDCS) for an autonomousvehicle safety that notifies the driver of an emergency situation and recognizes the driver's reaction in a situation where the driver is careless. The EDCS uses the emergency situation delivery module to make the emergency situation to text and transmits it to the driver by voice, and the driver response confirmation module recognizes the driver's reaction to the emergency situation and gives the driver permission Decide whether to pass. As a result of the experiment, the HMM of the emergency delivery module learned speech at 25% faster than RNN and 42.86% faster than LSTM. The Tacotron2 of the driver's response confirmation module converted text to speech about 20ms faster than deep voice and 50ms faster than deep mind. Therefore, the emergency notification and driver response confirmation system can efficiently learn the neural network model and check the driver's response in real time.

Estrogenic Activity Assessment of Alkylphenolic chemicals using in vitro assays : II. Competitive Receptor Binding Assay

  • Park, Hyo-Joung;Lee, Ho-Sa;Lee, Kilchul;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2001.05a
    • /
    • pp.126-126
    • /
    • 2001
  • Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wild range of environmental and industrial chemicals. It is clear that in vivo methods will be required to identify adverse effects produced by these chemicals. (omitted)

  • PDF

Dertermination of Alkylphenols, Chlorophenols and Bisphenol A in Various Samples by Freezing Filtration and GC/MS-SIM

  • Kim, Hyub
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.68.1-68.1
    • /
    • 2003
  • A method for determination 11 endocrine disrupting chemicals of phenols in various samples was deloped. The alkylphenols, chlorophenols and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) followed by two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization method and tert-butyldimethylsilyl (TBDMS) derivatization method. Eleven endocrine disrupting chemicals (EDCs) of phenols in biological samples were extracted with acetonitrile and then acetonitrile layer was refrigerated at -60$^{\circ}C$ for 2 hours (freezing filtration). (omitted)

  • PDF