Effects on EDC-like farming chemicals in aquatic Organism

환경생물에 대한 내분비교란물질 의심 농약의 영향

  • Kim, Hyun-Woo (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Park, Kun-Ho (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Park, Jin-Hong (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Jin, Hua (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Joon-Seong (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Eu, Gook-Jong (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Cho, Hyun-Sun (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Kang, Ga-Mi (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Myung-Sung (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Song, Byung-Hoon (Pesticide Safety Division, Department of Crop Protection, National Institute of Agricultural Science & Technology) ;
  • Shin, Jin-Sup (Pesticide Safety Division, Department of Crop Protection, National Institute of Agricultural Science & Technology) ;
  • Cho, Maing-Haing (Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University)
  • 김현우 (서울대학교 수의과대학 독성학교실) ;
  • 박건호 (서울대학교 수의과대학 독성학교실) ;
  • 박진홍 (서울대학교 수의과대학 독성학교실) ;
  • 김화 (서울대학교 수의과대학 독성학교실) ;
  • 김준성 (서울대학교 수의과대학 독성학교실) ;
  • 유국종 (서울대학교 수의과대학 독성학교실) ;
  • 조현선 (서울대학교 수의과대학 독성학교실) ;
  • 강가미 (서울대학교 수의과대학 독성학교실) ;
  • 이명성 (서울대학교 수의과대학 독성학교실) ;
  • 송병훈 (농업과학기술원 작물보호부 농약안전성과) ;
  • 신진섭 (농업과학기술원 작물보호부 농약안전성과) ;
  • 조명행 (서울대학교 수의과대학 독성학교실)
  • Published : 2003.09.30

Abstract

Endocrine disrupting chemicals (EDCs) can alter hormone regulation that control reproductive system in animals. The effects of endosulfan, molinate, and alachlor that suspected to have examined disruption EDCs effect on a fish species of interest, Xiphophorus helleri (swordtail fish), were studied using vitellogenin (Vtg) and aromatase as diagnostic biomarkers. Induction of Vtg proteins was detected by RT-PCR in male fish treated with alachlor, and mixture of endosulfan and molinate in dose response manner. Also, induction of aromatase was detected by RT-PCR in male fish treated with alachlor, endosulfan, and mixture of endosulfan and molinate in sinlilar manner. In this study, swordtail fish exposed to endosulfan or molinate individually did not show any adverse effects. However, Vtg and aromatase expressions and apoptosis were detected in swordtail. fish exposed to the mixture of endosulfan and molinate. These results suggested that low concentrations of mixture of molinate and endosulfan individually do not affect swordtail fish, but may influence genital system, and induce apoptosis.

내분비교란물질은 동물에서 생식기계통을 통제하는 호르몬 조절에 영향을 준다. 상기 선정된 농약을 투여함에 있어서 실험동물로 Xiphophorus helleri로 선정하였는데 이는 암수의 구별이 육안적으로 명확히 관찰되며 또한 난태생으로 사육이 용이한 점이 있다. Xiphophorus helleri에 있어서 내분비교란물질로 의심되는 endosulfan과 molinate의 영향을 조사하기 위하여 vitellogenin과 aromatase 를 진단 biomarker로써 사용하였다. RT-PCR 결과 endosulfan과 molinate의 혼합처치군 및 alachlor 단독군 수컷에서 vitellogenin과 aromatase의 induction 이 동시에 관찰되었고, endosulfan 단독군에서는 aromatase의 induction이 관찰되었다. 본 실험에서는 endosulfan이나 molinate 단독 처치군에서의 성호르몬과 세포에 대한 유해 효과는 나타나지 않았다. 그러나, endosulfan과 molinate 의 혼합처치군에서는 vitellogenin과 aromatase의 발현 및 apoptosis가 관찰되었다. 이러한 결과는 swordtail fish에 영향을 미치지 않는 낮은 농도의 molinate와 endosulfan이라도 병용되는 경우에 생식기계의 호르몬 변화와 apoptosis를 야기시킨다는 사실을 제시한다.

Keywords

References

  1. Finlayson, B. J. and G. A. Faggella (1986) Comparison of laboratory and field observations of fish exposed to the herbicides molinate and thiobencarb. Trans Am Fish Soc 12: 212-215
  2. Formoli, T. A. and H. R. Fong (1995) Estimation of exposure of persons in California to pesticide products that contain molinate HS. pp.1543. Worker Health and Safety Branch, Department of Pesticide Regulation, California Environmental Protection Agency, U.S.A
  3. Gendron, A. D., C. A. Bishop, R. Fortin and A. Hontela (1997) In vivo testing of the functiional integrity of the corticosterone-producing axis in mudpuppy (Am- phibia) exposed to chlorinated hydrocarbons in the wild. Environ Toxicol Chem 16: 1694-1706 https://doi.org/10.1897/1551-5028(1997)016<1694:IVTOTF>2.3.CO;2
  4. Gronen, S, N. Denslow, S. Manning, S. Barenes, D. Barnes and M. Brower (1999) Serum vitellogenin production levels and reproductive impairment of male Japanese medaka (Oryzias latipes) exposed to 4-tertoctylphenol. Environ Health Perspect 107: 385-390 https://doi.org/10.2307/3434542
  5. Harris, M. L., C. A. Bishop, J. Struger, M. R. Van Den Heuvel, G. J. Van Der Kraak, D. G. Dixon, B. Ripley and J. P. Bogart (1998) The functional integrity of northern leopard frog (Rana pipiens) and green frog (Rana clarnitans) populations in orchard wetlands. I. Genetics, physiology, and biochemistry of breeding adults and young-of-the-year. Env Toxicol Chem 17: 1338-1350 https://doi.org/10.1897/1551-5028(1998)017<1338:TFIONL>2.3.CO;2
  6. Hontela A. (1997) Endocrine and physiological responses of fish to xenobiotics: Role of glucocorticosteroid hormones. Rev Toxicol 1:1-46
  7. Jobling, S, D. Sheahan, J. A. Osborne, P. Mauhiessen and J. P. Sumpter (1996) Inhibition of testicular growth in rainbow trout(Onchohynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15: 194-202 https://doi.org/10.1897/1551-5028(1996)015<0194:IOTGIR>2.3.CO;2
  8. Jonsson, C. J., B. O. Lund, B. Brunstrom and I. Brandt (1994) Toxicity and irreversible binding of two DDT metabolites-3-methylsulfonyl-DDE and o,p'-DDD-in adrenal interrenal cells in birds. Environ Toxicol Chem 13: 1303-1310 https://doi.org/10.1897/1552-8618(1994)13[1303:TAIBOT]2.0.CO;2
  9. Kwak, H. I, M. O. Bae, M. H. Lee, Y. S. Lee, B. J. Lee, K. S. Kang, C. H Chae, H. J. Sung, J. S. Shin, J. H. Kim, W. C. Mar, Y. Y. Sheen and M. H. Cho (2001) Effects of nonylphenol, bisphenol A, and their mixture on the viviparous swordtail fish (Xiphophorus Helleri). Environ Toxicol Chem 20(4): 787-795 https://doi.org/10.1897/1551-5028(2001)020<0787:EONBAA>2.0.CO;2
  10. Kime, D. E., J. P. Nash and A. P. Scott (1999) Vitellogenesis as a biomarker of reproductive disruption by xeno- biotics. Aquaculture 177: 345-352 https://doi.org/10.1016/S0044-8486(99)00097-6
  11. Mellanen, P, M. Soimasuo, B. Holmbom, A. Oikari and R. Santti (1999) Expression of the vitellogenin gene in the liver of juvenile whitefish (Coregonus lavaretus) exposed to effluents from pulp and paper mills. Ecotoxicol Environ Saf 43:133-137 https://doi.org/10.1006/eesa.1999.1782
  12. Miles-Richardson, S. R. (1999) effects of waterborne exposure to 4-nonylphenol and nonylphenol ethoxylate on secondary sex characteristics and gonads of fathead minnows (pimephales promelas). Environ Res 80: S122-S137
  13. Monteverdi, G. H. and R. T. Di Giulio (1999) An enzyme-linked immunosorbent assay for estrogenicity using primary hepatocyte cultures from the channel catfish (Ictalurus punctatus). Arch Environ Contam Toxicol 37: 62-69 https://doi.org/10.1007/s002449900490
  14. Nicolas, J. M. (1999) Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Auat Toxicol 45: 77-90
  15. Orlando, E. F. and N. D. Denslow Jr. (1999) A comparison of the reproductive physiology of largemouth bass, Micropterus salmoides, collected from the Escambia and Blackwater Rivers in Florida. Environ health Perspect 107: 199-204 https://doi.org/10.2307/3434509
  16. Schulz, R. (2001) Rainfall-induced sediment and pesticide input from orchards into the Laurens River, Western Cape, South Africa : Importance of a single event 8: 1869-1876