• Title/Summary/Keyword: ECO-Glass

Search Result 108, Processing Time 0.027 seconds

A Basic Study on the Manufacture of UHPC 3D stereoscopic panels using 3D Printer (3D 프린터를 활용한 UHPC 3D 입체패널 제작에 관한 기초적 연구)

  • Kim, Tae-Ik;Yoon, Ju-Yong;Choi, Byung-Keol;Park, Yong-Kyu;Lee, Dae Seek;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.154-155
    • /
    • 2021
  • Appearance finish is important for amorphous buildings to maximize amorphousness, and GFRC, glass, and metal are mostly used as exterior materials for amorphous buildings currently applied. However, the existing exterior materials showed limitations in amorphous expression, texture, and color expression. In this study, a 3D stereoscopic panel mold was manufactured using the FDM method, one of the 3D printing technologies, and 3D stereoscopic panel production was reviewed using Ultra High Performance Concrete (UHPC), which has excellent physical and mechanical performance and expression. In order to overcome the limitations of unstructured expression, a UHPC 3D stereoscopic panel using the FDM method, one of the 3D printing technologies, was manufactured. Unlike steel molds, FRP molds, and EPS molds, the FDM method can be applied to various materials, and complex shapes are implemented. If it is used using recyclable materials as well as PLA filaments used in the FDM method, it will overcome the limitations of amorphous expression and activate the production of 3D stereoscopic panels that have secured eco-friendliness.

  • PDF

Developing Advanced Total Recycling Method of FRP Boats (FRP선박의 일괄 재처리 방법의 개선)

  • Lee, Seung Hee;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Since 1990s, the major recycling methods for mechanical recycling of FRP(Fiber Reinforced Plastics)boats has involved shredding and grinding of the scrap FRP in a new recycled product. But still it leads to secondary problem such as air pollution, unacceptable shredding noise level and few limited applications. This study is to propose a newly advanced method which is more efficient and environment friendly waste FRP regenerating system. As extracting FRP layer and making the recycled fiber for recycled-fiber reinforced concrete(RFRC) from waste FRP, the recycling process has some merits in a sense of the recycling energy and the environmental effects. In this study, for those tasks, spectro-chemical differentiation method and coloring water-soluble dye treatment makes the roving layer more distinguishable photophysically. Also that has remarkably reduced safety hazards and energy. Using the mechanical properties of polymers and composite, FRP with the orthotropic and laminated plastic structure has been easily separated in the new extracting system. Also the new method has introduced five kind of separating manuals for the some different compositions of FRP boats. The roving fiber of laminated glass-fiber layer is as good as the polyvinyl fiber which is cost-high commercial fiber to increasing strength of concrete products. The early study has shown the effectiveness of laminated glass-fiber layer which also is chemical-resistant due to the resin coating. These results imply that more efficient and environment friendly recycled glass fiber can be better applied to the fiber reinforced concrete(FRC) substitute and this study also has shown wide concrete applications with RFRC from the waste FRP boat.

Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization (비수계 분산중합으로 제조된 환경친화성 아크릴수지/나노클레이 복합재료의 특성 연구)

  • Kim, Yeongho;Lee, Minho;Jeon, Hyeonyeol;Lee, Young Chul;Min, Byong Hun;Kim, Jeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.120-126
    • /
    • 2016
  • Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat (친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구)

  • Seo, Young Min;Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eun Joo;Go, Young Jun;Choi, Jin Hyun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: To improve glasses temple's insert processibility of CA/PEG blend, triacetin with higher specific heat values in the processing temperature range is used as second plasticizer. Methods: The total amount of plasticizer is fixed at 30 wt% by CA. To determine optimal CA/PEG/triacetin blend for glasses frame, blends with different composition ratio were examined by various analysis: thermal properties, mechanical properties, glossiness. Results: Specific heat of the CA/PEG blend increased as the content of triacetin. In CA/PEG/triacetin blends, as triacetin concentration is increased, glass transition temperature is decreased and heat conservation rate of composites is increased. Furthermore, CA/PEG/triacetin blend exhibited higher mechanical properties and similar gloss characterization with CA/PEG blend. Conclusions: It is possible to improve the processibility inserting metal support to CA temple through varying the weight ratio of PEG/triacetin. The extruded sheets of CA/PEG/triacetin blend had better glossiness and mechanical properties than those of CA/PEG blend.

Synthesis of Eco-Friendly High Solid Acrylic Resins and Curing Properties of Acrylic Urethane Resin Coatings (환경 친화형 하이솔리드 아크릴수지의 합성과 아크릴 우레탄 도료의 경화 특성)

  • Kim, Jin-Wook;Lee, Dong-Chan;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.586-592
    • /
    • 2017
  • In this study, acrylic resins with solids content of 75% were prepared by addition polymerization of n-butyl acrylate (BA), methyl methacrylate (MMA), 2-hydroxypropyl methacrylate (HPMA) and acetoacetoxyethyl methacrylate (AAEM) monomers. At this time, the glass transition temperature ($T_g$) of the acrylic resin was changed to 20, 30 and $40^{\circ}C$, and the hydroxyl value (OH value) was changed to 60, 90 and 120. As a result, the viscosity of acrylic resin increased with increasing $T_g$ and hydroxyl (OH) value. The synthesized acrylic resin was designed to have a high cross-link density to maintain high elasticity and high durability. The crosslinked acrylic resin was used to prepare an acrylic urethane clear coating by curing reaction with a block isocyanate (Desmodur BL-3175). The physical properties of the clear paints were analyzed by measuring viscosity, adhesion, pencil hardness and $60^{\circ}$ specular gloss. Acrylic urethane clear coatings were prepared as specimens and evaluated for various properties to be applied as top coatings for coil coating. The prepared coatings were excellent in adhesion, excellent in $60^{\circ}$ specular gloss and pencil hardness, and eco-friendly.

Application of Non-Alkaline Silica Sol Grouting Method Considering the Eco-Friendliness (친환경 비알칼리성 실리카졸 차수공법의 적용)

  • Jang, Yonggu;Kim, Sugyum;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.37-45
    • /
    • 2016
  • This study analyzes the environmental and durability problems of traditional (LW) grouting method. And the proposed method was compared to the others effects by analyzing the in-situ applicability and effect of performance of the method using the silica sol. This study analyzed the eco-friendly, effects of high strength silica sol through laboratory tests. The effects of the construction process were identified through the field tests. The compressive strength was increased by 1.3 times compared to the LW method and the shrinkage is 3~8 times less than that of LW method with water glass. No toxicity, which could affect soil contamination. In particular, it was confirmed that the Toxicity fish also survived with little pH change in the concentration tank. Also it confirmed the construction effects through field test. Field tests are a standard penetration test, permeability test, LLT, BST. Permeability was reduced to $1{\times}10^{-5{\sim}-6}cm/sec$.

Design and Properties of Laminating Waterborne PSA for Eco-friendly Flexible Food Packaging (식품연포장용 라미네이트 수성 감압점착제의 친환경적 적용에 대한 연구)

  • Lee, Jin-Kyoung;Shim, Myoung-Sik;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • In this study, we designed an environment friendly, water-based adhesive using the acrylic emulsion method as a replacement for solvent-based adhesives, which are most commonly used in layered laminates for flexible food packaging. We designed adhesives with different combinations of anionic, non-ionic, and phosphoric ester surfactants, and with different concentrations of chain transfer agent (CTA). We also examined the effect of the degree of cross-linking by synthesizing and comparing 8 test group adhesives with different types of functional monomers. Additionally, we synthesized 2 other test group pressure-sensitive adhesives (PSA) using styrene/alpha-methyl styrene/acrylic acid (SAA) semipolymer dispersing agents (with molecular weights of 13,000 g/mol and 8,600 g/mol, respectively) to replace the conventional surfactants. We evaluated whether the 10 test group pressure-sensitive adhesives met the basic physical property criteria required for flexible food packaging by carrying out a physical analysis of their glass transition temperature (Tg), particle size, adhesion, and molecular weight. In our test, 2 test group adhesives manufactured with the combination of anionic and non-ionic surfactants, CTA concentration of 0.2%, and functional monomers of hydroxyethyl acrylate (HEA) and glycidyl methacrylate (GMA) demonstrated molecular weight and flexibility suitable for flexible packaging, with low adhesiveness and small particle size.

Developing a General Recycling Method of FRP Boats (FRP선박의 범용 재활용을 위한 재처리시스템의 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • For several decades, many researchers have been involved in developing recycling methods for FRP boats. There are four basic classes of recycling covered in the literature. Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP, is one of the simpler and more technically proven methods than incineration, reclamation or chemical ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also leads to secondary problem in recycling process, such as air pollution and unacceptable shredding noise level. Another serious problem of mechanical FRP recycling is very limited reusable applications for the residue. This study is to propose a new and efficient method which is more wide range applications and environment friendly waste FRP regenerating system. New system is added with the cyclone sorting machine for airborne pollutions and modified cutting system for several glass fiber chips sizes. It also has shown the FRP chip fiber-reinforced concrete and fiber-reinforced secondary concrete applications with the waste FRP boat to be more eligible than existing recycling method.

  • PDF

Rheological behavior and ink-jet printing characteristics of aqueous ceramic complex ink (수계 세라믹 복합잉크의 유변학적 거동 및 잉크젯 프린팅 특성)

  • Kwon, Jong-Woo;Lee, Jong-Heun;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.123-129
    • /
    • 2018
  • Ink-jet printing technology with ceramic ink of the four digital primary colors (cyan, magenta, yellow, and black; CMYK) can provide stable coloration even in the high-temperature firing process. Ceramic ink-jet printing can be widely applied in construction and ceramic industries due to the advantages of accurate and fast printing process of digital images for various products. Generally, organic solvent with proper viscosity and surface tension has been used in digital ink-jet printing process. However, the needs of ceramic ink without VOCs emission is increasing. In the present study, eco-friendly ceramic ink was synthesized by combining alumino boro-silicate glass frit and $CoAl_2O_4$ inorganic pigment based on an aqueous solvent that does not generate VOCs. The rheological properties and dispersion stability of aqueous ceramic ink were optimized. Jetting behavior and printing characteristics of the ceramic ink were also investigated in detail. As a result, the formulated aqueous ceramic complex ink showed a suitable jetting behavior without satellite drop by adjusting viscosity and surface tension. The ceramic ink can be printed on glass substrate with minimized spreading phenomena duo to high contact angle.

Trends in Development and Marketing of Degradable Plastics (분해성 플라스틱의 개발 및 시장 동향)

  • You, Young-Sun;So, Kyu-Ho;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.365-374
    • /
    • 2008
  • Plastics are comparatively new polymeric materials that are manufactured by chemical synthesis, making them different from natural materials such as wood, paper, stone, metal, and glass. Due to a wide range of properties, including processing capabilities and duration, plastics have become rapidly ubiquitous, being used in all industries, and have improved our quality of life. However, it is true that plastics cause environmental contamination problems that have become important social issues, such as environmental hormone leakage due to incineration or reclamation, difficulty in securing reclamation sites, and deadly poisonous dioxin generated by the incomplete incineration of waste plastic materials. To solve these problems, it is urgent to develop and commercialize degradable plastics that can be stably and conveniently used just as general plastics, and that are easily decomposed by sunlight, soil microbes, and heat generated from reclaimed land after use. This review presents recent worldwide trends in the development and marketing of environmentally degradable plastics.