• Title/Summary/Keyword: ECMP

Search Result 29, Processing Time 0.032 seconds

Analysis of Research Trends on Electrochemical-Mechanical Planarization (전기화학-기계적 평탄화에 관한 연구 동향 분석)

  • Lee, Hyunseop;Kim, Jihun;Park, Seongmin;Chu, Dongyeop
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.213-223
    • /
    • 2021
  • Electrochemical mechanical planarization (ECMP) was developed to overcome the shortcomings of conventional chemical mechanical planarization (CMP). Because ECMP technology utilizes electrochemical reactions, it can have a higher efficiency than CMP even under low pressure conditions. Therefore, there is an advantage in that it is possible to reduce dicing and erosions, which are physical defects in semiconductor CMP. This paper summarizes the papers on ECMP published from 2003 to 2021 and analyzes research trends in ECMP technology. First, the material removal mechanisms and the configuration of the ECMP machine are dealt with, and then ECMP research trends are reviewed. For ECMP research trends, electrolyte, processing variables and pads, tribology, modeling, and application studies are investigated. In the past, research on ECMP was focused on basic research for the development of electrolytes, but it has recently developed into research on tribology and process variables and on new processing systems and applications. However, there is still a need to increase the processing efficiency, and to this end, the development of a hybrid ECMP processing method using another energy source is required. In addition, ECMP systems that can respond to the developing metal 3D printing technology must be researched, and ECMP equipment technology using CNC and robot technology must be developed.

Optimization of Electrolytes on Cn ECMP Process (Cu ECMP 공정에 사용디는 전해액의 최적화)

  • Kwon, Tae-Young;Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.78-78
    • /
    • 2007
  • In semiconductor devices, Cu has been used for the formation of multilevel metal interconnects by the damascene technique. Also lower dielectric constant materials is needed for the below 65 nm technology node. However, the low-k materials has porous structure and they can be easily damaged by high down pressure during conventional CMP. Also, Cu surface are vulnerable to have surface scratches by abrasive particles in CMP slurry. In order to overcome these technical difficulties in CMP, electro-chemical mechanical planarization (ECMP) has been introduced. ECMP uses abrasive free electrolyte, soft pad and low down-force. Especially, electrolyte is an important process factor in ECMP. The purpose of this study was to characterize KOH and $KNO_3$ based electrolytes on electro-chemical mechanical. planarization. Also, the effect of additives such as an organic acid and oxidizer on ECMP behavior was investigated. The removal rate and static etch rate were measured to evaluate the effect of electro chemical reaction.

  • PDF

Planarizaiton of Cu Interconnect using ECMP Process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing(CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical polishing(ECMP) or electro-chemical mechanical planarization was introduced to solve the technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

The Effect of Electrolytes on Polshing Behavior in Cu ECMP (Cu ECMP 공정에서 전해액이 연마거동에 미치는 영향)

  • Kwon, Tae-Young;Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.334-338
    • /
    • 2008
  • The purpose of this study is to characterize various electrolytes on electrochemical mechanical planarization (ECMP). The ECMP system was modified from conventional CMP system to measure the potentiodynamic curve and removal rate of Cu. The potentiodynamic curves were measured in static and dynamic states in investigated electrolytes using a potentiostat for the evaluation of the polishing behavior on ECMP. KOH (alkaline) and $NaNO_3$ (salt) were selected as electrolytes which have high conductivity. In static and dynamic states, the corrosion potential decreased and the corrosion current increased as a function of the electrolyte concentration. But, the electrochemical reaction was prevented by mechanical polishing effect in the dynamic state. The static etch and removal rate were measured as functions of concentration and applied voltage. When $NaNO_3$ was used, the dissolution was much faster than that of KOH. It was concluded that the removal rate was strongly depended on electrochemical dissolution. The removal rate increased up to 350 nm/min in $NaNO_3$ based electrolyte.

Voltage-Activated Electrochemical Reaction for Electrochemical Mechanical Polishing (ECMP) Application (ECMP 적용을 위한 전압활성영역의 전기화학적 반응 고찰)

  • Han, Sang-Jun;Lee, Young-Kyun;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.163-163
    • /
    • 2008
  • 반도체 소자가 고집적화 되고 고속화를 필요로 하게 됨에 따라, 기존에 사용되었던 알루미늄이나 텅스텐보다 낮은 전기저항, 높은 electro-migration resistance으로 미세한 금속배선 처리가 가능한 Cu가 주목받게 되었다. 하지만 과잉 디싱 현상과 에로젼을 유도하여 메탈라인 브리징과 단락을 초래할 있고 Cu의 단락인 islands를 남김으로서 표면 결함을 제거하는데 효과적이지 못다는 단점을 가지고 있었다. 특히 평탄화 공정시 높은 압력으로 인하여 Cu막의 하부인 ILD막의 다공성의 low-k 물질의 손상을 초래 할 수 있는 문제점을 해결하기 위하여 기존의 CMP에 전기화학을 결합시킴으로서 낮은 하력에서의 Cu 평탄화를 달성 할 수 있는 기존의 CMP 기술에 전기화학을 접목한 새로운 개념의 ECMP (electrochemical-mechanical polishing) 기술이 생겨나게 되었다. 따라서 본 논문에서는 최적화된 ECMP 공정을 위하여 I-V곡선과 CV법을 이용하여 active. passive. trans-passive 영역의 전기화학적 특징을 알아보았고. Cu막의 표면 형상을 알아보기 위해 Scanning Electron Microscopy (SEM) 측정과 Energy Dispersive Spectroscopy (EDS) 분석을 통해 금속 화학적 조성을 조사하였다.

  • PDF

Surface Characterization of Cu as Electrolyte in ECMP (ECMP 공정에서 전해질에 따른 Cu 표면 특성 평가)

  • Kwon, Tae-Young;Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.528-528
    • /
    • 2007
  • Cu CMP widely has been using for the formation of multilevel metal interconnects by the Cu damascene process. And lower dielectric constant materials are required for the below 45nm technology node. As the dielectric constant of dielectric materials are smaller, the strength of dielectric materials become weaker. Therefore these materials are easily damaged by high down pressure during conventional CMP. Also, technical problems such as surface scratches, delamination, dishing and erosion are also occurred. In order to overcome these problems in CMP, the ECMP (electro-chemical mechanical planarization) has been introduced. In this process, abrasive free electrolyte, soft pad and low down force were used. The electrolyte is one of important factor to solve these problems. Also, additives are required to improve the removal rate, uniformity, surface roughness, defects, and so on. In this study, KOH and $NaNO_3$ based electrolytes were used for Cu ECMP and the electrochemical behavior was evaluated by the potentiostat. Also, the Cu surface was observed by SEM as a function of applied voltage and chemical concentration.

  • PDF

A Study on Efficient DDoS Protection Techniques using Anycast and BGP ECMP (Anycast 구조와 BGP ECMP를 활용한 효율적인 DDoS 공격 방어 기법에 대한 연구)

  • Hong, Yun Seok;Han, Wooyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.125-128
    • /
    • 2022
  • As the number of online systems based on the internet gradually increases, cyber-scale attacks that interfere with the normal operation of web services are also on the rise. In particular, distributed denial-of-service attacks (DDoS) that interfere with normal web service operations are also increasing. Therefore, this paper presents an efficient DDoS attack defense technique utilizing Equal Cost Multi-Path (BGP ECMP) routing techniques in networks of Anycast type by operating PoP basis of major attack sources and describes how high-availability web services can be operated.

  • PDF

I-V Characteristics of $KNO_3$ Electrolyte for ECMP Application (ECMP 적용을 위한 $KNO_3$ 전해액의 I-V 특성 고찰)

  • Han, Sang-Jun;Lee, Young-Kyun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.115-115
    • /
    • 2008
  • 본 논문에서는 최적화된 ECMP 공정을 위하여 I-V 특성 곡선과 CV법을 이용하여 패시베이션 막의 active, passive, transient, trans-passive 영역의 전기화학적 특성을 알아보았으며, Cu막의 표면 형상을 Scanning Electron Microscopy (SEM) 측정과 금속 화학적 조성을 Energy Dispersive Spectroscopy (EDS) 분석을 통해 분석하였다.

  • PDF

A Scheduling Algorithm for Performance Enhancement of Science Data Center Network based on OpenFlow (오픈플로우 기반의 과학실험데이터센터 네트워크의 성능 향상을 위한 스케줄링 알고리즘)

  • Kong, Jong Uk;Min, Seok Hong;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1655-1665
    • /
    • 2017
  • Recently data centers are being constructed actively by many cloud service providers, enterprises, research institutes, etc. Generally, they are built on tree topology using ECMP data forwarding scheme for load balancing. In this paper, we examine data center network topologies like tree topology and fat-tree topology, and load balancing technologies like MLAG and ECMP. Then, we propose a scheduling algorithm to efficiently transmit particular files stored on the hosts in the data center to the destination node outside the data center, where fat-tree topology and OpenFlow protocol between infrastructure layer and control layer are used. We run performance analysis by numerical method, and compare the analysis results with those of ECMP. Through the performance comparison, we show the outperformance of the proposed algorithm in terms of throughput and file transfer completion time.