• Title/Summary/Keyword: ECG signal

Search Result 565, Processing Time 0.026 seconds

Implementation and Evaluation of Abnormal ECG Detection Algorithm Using DTW Minimum Accumulation Distance (DTW 최소누적거리를 이용한 심전도 이상 검출 알고리즘 구현 및 평가)

  • Noh, Yun-Hong;Lee, Young-Dong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Recently the convergence of healthcare technology is used for daily life healthcare monitoring. Cardiac arrhythmia is presented by the state of the heart irregularity. Abnormal heart's electrical signal pathway or heart's tissue disorder could be the cause of cardiac arrhythmia. Fatal arrhythmia could put patient's life at risk. Therefore arrhythmia detection is very important. Previous studies on the detection of arrhythmia in various ECG analysis and classification methods had been carried out. In this paper, an ECG signal processing techniques to detect abnormal ECG based on DTW minimum accumulation distance through the template matching for normalized data and variable threshold method for ECG R-peak detection. Signal processing techniques able to determine the occurrence of normal ECG and abnormal ECG. Abnormal ECG detection algorithm using DTW minimum accumulation distance method is performed using MITBIH database for performance evaluation. Experiment result shows the average percentage accuracy of using the propose method for Rpeak detection is 99.63 % and abnormal detection is 99.60 %.

A Study on Labeling Algorithm of ECG Signal using Fuzzy Clustering (퍼지 클러스터링을 이용한 심전도 신호의 구분 알고리즘에 관한 연구)

  • Kong, In-Wook;Kweon, Hyuk-Je;Lee, Jeong-Whan;Lee, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.427-436
    • /
    • 1999
  • This paper describes an ECG signal labeling algorithm based on fuzzy clustering, which is very useful to the automated ECG diagnosis. The existing labeling methods compares the crosscorrelations of each wave form using IF-THEN binary logic, which tends to recognize the same wave forms such as different things when the wave forms have a little morphological variation. To prevent this error, we have proposed as ECG signal labeling algorithm using fuzzy clustering. The center and the membership function of a cluster is calculated by a cluster validity function. The dominant cluster type is determined by RR interval, and the representative beat of each cluster is determined by MF (Membership Function). The problem of IF-THEN binary logic is solved by FCM (Fuzzy C-Means). The MF and the result of FCM can be effectively used in the automated fuzzy inference -ECG diagnosis.

  • PDF

Implementation of a Mini ECG Using a Digital Filter (디지털 필터를 이용한 소형 심전도계의 구현)

  • An, Jonghyun;Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.77-81
    • /
    • 2021
  • In this paper, a low-csst ECG system using a digital filter was implemented. After amplifying the analog ECG signal, it is converted into a digital signal and filtered. The developed ECG module is miniaturized by removing the analog filter element that occupies the existing volume and replacing it with a digital filter using a 3-stage Butterworth filter which is one of IIR filters. It uses a serial monitoring program with C# to check and save the ECG waveform measured on a computer screen. The ECG system using a developed digital filter in this paper uses a low-cost processor instead of an expensive, high-end processor, and its size and price are reduced by converting the analog filter to a digital filter. In addition, since the waveform of the developed ECG system is similar to the actual ECG waveform of MIT-BIU, it is considered that the existing analog filter can be replaced with the developed digital filter.

Adaptive Processing Algorithm Allocation on OpenCL-based FPGA-GPU Hybrid Layer for Energy-Efficient Reconfigurable Acceleration of Abnormal ECG Diagnosis (비정상 ECG 진단의 에너지 효율적인 재구성 가능한 가속을 위한 OpenCL 기반 FPGA-GPU 혼합 계층 적응 처리 알고리즘 할당)

  • Lee, Dongkyu;Lee, Seungmin;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1279-1286
    • /
    • 2021
  • The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.

Peak Detection using Syntactic Pattern Recognition in the ECG signal (Syntactic 패턴인식에 의한 심전도 피이크 검출에 관한 연구)

  • Shin, Kun-Soo;Kim, Yong-Man;Yoon, Hyung-Ro;Lee, Ung-Ku;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.19-22
    • /
    • 1989
  • This paper represents a syntactic peak detection algorithm which detects peaks in the ECG signal. In the algorithm, the input waveform is linearly approximated by "split-and-merge" method, and then each line segment is symbolized with primitive set. The peeks in the symbolized input waveform are recognized by the finite-state automata, which the deterministic finite-state language is parsed by. This proposed algorithm correctly detects peaks in a normal ECG signal as well as in the abnormal ECG signal such as tachycardia and the contaminated signal with noise.

  • PDF

ECG Signal Compression using Feature Points based on Curvature (곡률을 이용한 특징점 기반 심전도 신호 압축)

  • Kim, Tae-Hun;Kim, Sung-Wan;Ryu, Chun-Ha;Yun, Byoung-Ju;Kim, Jeong-Hong;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.624-630
    • /
    • 2010
  • As electrocardiogram(ECG) signals are generally sampled with a frequency of over 200Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently. In this paper, an ECG signal compression method, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes are extracted with the proposed method, which uses local extremum of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes are added according to the iterative vertex selection method. Through the experimental results on the ECG signals from MIT-BIH Arrhythmia database, it is concluded that the vertexes selected by the proposed method preserve all feature points of the ECG signals. In addition, they are more efficient than the AZTEC(Amplitude Zone Time Epoch Coding) method.

ECG Filtering using Empirical Mode Decomposition Method (EMD 방법을 이용한 ECG 신호 필터링)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2671-2676
    • /
    • 2009
  • Empirical mode decomposition (EMD) is new time-frequency analysis method to decompose the signal adaptively and efficiently. The key idea of EMD is to decompose the signal into a set of functions defined by the signal itself, named Intrinsic Mode Functions (IMFs), which preserve the inherent properties of the original signal. Since the decomposition is based on the local time scale of the signal, it is not only applicable to nonlinear and non-stationary processes but also useful in biomedical signals like electrocardiogram (ECG). Traditional low-pass filter uses fourier transform to analysis signal in frequency domain, but EMD is filtered to maintain signal properties in time domain. This paper performed signal decomposition and filtering for noisy ECGs using EMD method. The proposed method is presented and compared with traditional low-pass filter by two performance indices. Our results show effectiveness for enhancement of the noisy ECG waveforms.

Removing Baseline Drift from ECG Signal Using Smoothing Spline and Morphology Operation (평활화 스플라인 연산과 형태학 연산을 이용한 기저선 변동 잡음 제거)

  • Back, Seung-Gwan;Choi, Chang-Hoon;Kim, Jeong-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.162-171
    • /
    • 2017
  • Low frequency noise components causes the baseline drift in the ECG signals. In this paper, a morphological operation and smoothing spline technique are used for ECG signal processing in order to accomplish baseline correction. Removing the baseline drift from ECG signal using morphology operation, the feature of original signal may be distorted. To resolve this distortion problem, we applied a smoothing spline operation after morphology operation. In order to compare with existing morphology operation method for baseline correction, we apply proposed method to ECG data in MIT/BIH database. Compared to other existing method, our proposed method achieved low data distortion on the original signal.

ECG Identification Method Using Adaptive Weight Based LMSE Optimization (적응적 가중치를 사용한 LMSE 최적화 기반의 심전도 개인 인식 방법)

  • Kim, Seok-Ho;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents a Electrocardiogram(ECG) identification method using adaptive weight based on Least Mean Square Error(LMSE) optimization. With a preprocessing for noise suppression, we extracts the average ECG signal and its standard deviation at every time instant. Then the extracted information is stored in database. ECG identification is achieved by matching an input ECG signal with the information in database. In computing the matching scores, the standard deviation is used. The scores are computed by applying adaptive weights to the values of the input signal over all time instants. The adaptive weight consists of two terms. The first term is the inverse of the standard deviation of an input signal. The second term is the proportional one to the standard deviation between user SAECGs stored in the DB. Experimental results show up to 100% recognition rate for 32 registered people.

ECG Signal Compression based on Adaptive Multi-level Code (적응적 멀티 레벨 코드 기반의 심전도 신호 압축)

  • Kim, Jungjoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.519-526
    • /
    • 2013
  • ECG signal has the feature that is repeated in a cycle of P, Q, R, S, and T waves and is sampled at a high sampling frequency in general. By using the feature of periodic ECG signals, maximizing compression efficiency while minimizing the loss of important information for diagnosis is required. However, the periodic characteristics of such amplitude and period is not constant by measuring time and patients. Even though measured at the same time, the patient's characteristics display different periodic intervals. In this paper, an adaptive multi-level coding is provided by coding adaptively the dominant and non-dominant signal interval of the ECG signal. The proposed method can maximize the compression efficiency by using a multi-level code that applies different compression ratios considering information loss associated with the dominant signal intervals and non-dominant signal intervals. For the case of long time measurement, this method has a merit of maximizing compression ratio compared with existing compression methods that do not use the periodicity of the ECG signal and for the lossless compression coding of non-dominant signal intervals, the method has an advantage that can be stored without loss of information. The effectiveness of the ECG signal compression is proved throughout the experiment on ECG signal of MIT-BIH arrhythmia database.