DOI QR코드

DOI QR Code

ECG Signal Compression based on Adaptive Multi-level Code

적응적 멀티 레벨 코드 기반의 심전도 신호 압축

  • Kim, Jungjoon (School of Electronics Engineering, Kyungpook National University)
  • Received : 2013.08.27
  • Accepted : 2013.11.21
  • Published : 2013.12.25

Abstract

ECG signal has the feature that is repeated in a cycle of P, Q, R, S, and T waves and is sampled at a high sampling frequency in general. By using the feature of periodic ECG signals, maximizing compression efficiency while minimizing the loss of important information for diagnosis is required. However, the periodic characteristics of such amplitude and period is not constant by measuring time and patients. Even though measured at the same time, the patient's characteristics display different periodic intervals. In this paper, an adaptive multi-level coding is provided by coding adaptively the dominant and non-dominant signal interval of the ECG signal. The proposed method can maximize the compression efficiency by using a multi-level code that applies different compression ratios considering information loss associated with the dominant signal intervals and non-dominant signal intervals. For the case of long time measurement, this method has a merit of maximizing compression ratio compared with existing compression methods that do not use the periodicity of the ECG signal and for the lossless compression coding of non-dominant signal intervals, the method has an advantage that can be stored without loss of information. The effectiveness of the ECG signal compression is proved throughout the experiment on ECG signal of MIT-BIH arrhythmia database.

심전도 신호는 P, Q, R, S, T파를 한 주기로 하여 반복되는 특징을 가지고 있으며 일반적으로 높은 표본화 주파수로 샘플링 된다. 이러한 심전도 신호의 주기적인 특징을 이용하여 진단에 중요한 정보의 손실을 최소화하면서 압축 효율을 극대화시키는 방법이 필요하다. 그러나 이러한 주기적인 특징은 심검자와 측정 시기에 따라 진폭과 주기가 일정하지가 않다. 또한 환자의 경우, 같은 시기에 측정하더라도 주기적 특징이 다르게 나타나는 구간이 존재한다. 본 논문에서는 적응적 멀티 레벨 코드를 이용하여 주도적인 신호 구간과 비주도적인 신호 구간의 심전도 신호를 적응적으로 코드화하는 방법을 제안한다. 제안하는 방식은 주도적인 신호 구간과 비주도적인 신호 구간에 따른 손실 대비 압축률을 차등 적용함으로써 반복적인 신호를 멀티 레벨 코드를 이용하여 압축의 효율성을 극대화하는 것이다. 이는 심전도 신호의 주기성을 이용하지 않은 기존의 압축 방식에 비해 장시간 측정 데이터의 압축률을 극대화시키고 비주도적인 신호를 코드화하여 무손실 압축을 함으로써 진단에 중요한 정보를 손실 없이 보존할 수 있는 장점이 있다. MIT-BIH 부정맥 데이터베이스에 있는 심전도 신호에 대한 실험을 통하여 압축의 효용성을 검증하였다.

Keywords

References

  1. F. Enseleit and F. Duru, "Long-term continuous external electrocardiographic recording: A review," Europace, vol. 8, no. 4, pp. 255-266, 2006. https://doi.org/10.1093/europace/euj054
  2. B. J. Schijvennaars, G. Van Herpen, and J. A. Kors, "Intraindividual variability in electrocardiograms," Journal of Electrocardiology, vol. 41, no. 3, pp. 190-196, 2008. https://doi.org/10.1016/j.jelectrocard.2008.01.012
  3. H. J. Kim, R. F. Yazicioglu, P. Merken, C. Van Hoof, and H. J. Yoo, "ECG signal compression and classification algorithm with quad level vector for ECG holter system," IEEE Trans. Information Technology in Biomedicine, vol. 14, no. 1, pp. 93-100, 2010. https://doi.org/10.1109/TITB.2009.2031638
  4. F. Jager, I. Koren, and L. Gyergyek, "Multiresolutional representation and analysis of ECG waveforms," Proceedings of Computers in Cardiology, pp. 547-550, 1990.
  5. J. Abenstein and W. Tompkins, "A new data-reduction algorithm for real-time ECG analysis," IEEE Trans. Biomedical Engineering, vol. BME-29, no. 1, pp. 43-48, 1982. https://doi.org/10.1109/TBME.1982.324962
  6. M. Benmalek and A. Charef, "Digital fractional order operators for R-wave detection in electrocardiogram signal," IET Signal Processing, vol. 3, no. 5, pp. 381-391, 2009. https://doi.org/10.1049/iet-spr.2008.0094
  7. Q. Zhang, A. I. Manriquez, C. Medigue, Y. Papelier, and M. Sorine, "An algorithm for robust and efficient location of T-wave ends in electrocardiogram," IEEE Trans. Biomedical Engineering, vol. 53, no. 12, pp. 2544-2552, 2006. https://doi.org/10.1109/TBME.2006.884644
  8. J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ECG delineator: Evaluation on standard databases," IEEE Trans. Biomedical Engineering, vol. 51, no. 4, pp. 570-581, 2004. https://doi.org/10.1109/TBME.2003.821031
  9. T. H. Kim, S. W. Kim, C. Ryu, B. J. Yun, J. H. Kim, B. J. Choi, K. H. Park, "ECG signal compression using feature points based on curvature," J ournal of The Korean Institute of Intelligent Systems, vol. 20. no. 5, pp. 624-630, 2010. https://doi.org/10.5391/JKIIS.2010.20.5.624
  10. C. Ryu, T. H. Kim, B. G. Lee, B. J. Choi, K. H. Park, "ECG signal compression based on B-spline approximation," Journal of The Korean Institute of Intelligent Systems, vol. 21. no. 5, pp. 653-659, 2011. https://doi.org/10.5391/JKIIS.2011.21.5.653
  11. C. Ryu, T. H. Kim, J. Kim, B. J. Choi, K. H. Park, "Electrocardiogram signal compression with reconstruction via radial basis function interpolation based on the vertex," International Journal of Fuzzy Logic and Intelligent Systems, vol. 13, no. 1, pp. 31-38, March 2013. https://doi.org/10.5391/IJFIS.2013.13.1.31
  12. S. Jalaeddine, C. Hutchens R., Stattan. and W. Coberly, "ECG data compression techniques-A unified approach," IEEE Trans. Biomedical Engineering, vol. 37, pp. 329-343, 1990. https://doi.org/10.1109/10.52340
  13. S. W. Kim, S. Y. Kim, T. H. Kim, B. J. Choi, K. H. Park, "Minimizing algorithm of baseline wander for ECG signal using Morphology-pair," Journal of The Korean Institute of Intelligent Systems, vol. 20. no. 4, pp. 574-579, 2010. https://doi.org/10.5391/JKIIS.2010.20.4.574