• Title/Summary/Keyword: ECG data compression

Search Result 34, Processing Time 0.019 seconds

Performance Evaluation of ECG Compression Algorithms using Classification of Signals based PQSRT Wave Features (PQRST파 특징 기반 신호의 분류를 이용한 심전도 압축 알고리즘 성능 평가)

  • Koo, Jung-Joo;Choi, Goang-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.313-320
    • /
    • 2012
  • An ECG(Electrocardiogram) compression can increase the processing speed of system as well as reduce amount of signal transmission and data storage of long-term records. Whereas conventional performance evaluations of loss or lossless compression algorithms measure PRD(Percent RMS Difference) and CR(Compression Ratio) in the viewpoint of engineers, this paper focused on the performance evaluations of compression algorithms in the viewpoint of diagnostician who diagnosis ECG. Generally, for not effecting the diagnosis in the ECG compression, the position, length, amplitude and waveform of the restored signal of PQRST wave should not be damaged. AZTEC, a typical ECG compression algorithm, is validated its effectiveness in conventional performance evaluation. In this paper, we propose novel performance evaluation of AZTEC in the viewpoint of diagnostician.

ECG Data Compression and Reconstruction Using a Walsh Transform (왈쉬 변환을 이용한 심전도 데이터 압축 재생)

  • Lee, Kyung-Joong;Yun, Hyung-Ro;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 1986
  • We have implemented data compression and reconstruction by using a fast Walsh transform. The ECG signals were generated by an ECG BimLllator (KONT- RON). The sampling frequency was 480 Hz and the data point number used was 512. In order to eliminate the 60 Hz noise and baseline drift, a digital notch filter was designed. We obtaine!1 a compression ratio of 5 : 1 and at this ratio it was possible to obtain a true diagnosis and an ECG morphology analysis.

  • PDF

Compression of Electrocardiogram Using MPE-LPC (MPE-LPC를 이용한 심전도 신호의 압축)

  • 이태진;김원기;차일환;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.866-875
    • /
    • 1991
  • In this paper, multi pulse excited-linear predictive coding (MPE-LPC), where the correlation eliminated residual signal is modeled by a few pules, is shown to be effective for the compression of electrocardiogram (ECG) data, and a more efficient scheme for a faithful reconstruction of ECG is proposed. The reconstruction charateristic of QRS's and P.T waves is improved using the adaptive pulse allocation (APA), and the compression ratio (CR) can be changed by controlling the mumber of modeling pulses. The performance of the proposed method was evaluated using 10 normal and 10 abnormal ECG data. The proposed method had a better performance than the variable threshold amplitude zone time epoch coding (AZTEC) algorithm and the scan-along polygonal approximation (SAPA) algorithm with the same CR. With the CR in kthe range of 8:1 to 14:1, we could compress ECG data efficiently.

  • PDF

Research on a Solution for Efficient ECG Data Transmission in u-Healthcare Environment (u-Healthcare 환경에서의 효율적인 ECG 데이터 전송 방안에 관한 연구)

  • Cho, Gyoun-Yon;Lee, Seo-Joon;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.397-403
    • /
    • 2014
  • In u-Healthcare environment, large amounts of important medical information is processed through wireless communication. Therefore there is a need to increase the efficiency of the network system of sending ECG data. This paper presents a compression solution for efficient ECG data transmission(ECGLZW) in u-Healthcare environment. The results showed that the average compression ratio of ECGLZW was 4.6, which got 200% better than existing methods(Huffman and LZW compression). ECGLZW's high compression ratio can increase the efficiency of wireless channels. As a result, reliable communication and security of u-Healthcare information could be achieved by applying these remaining channels to retransmission and encryption.

ECG signal compression based on B-spline approximation (B-spline 근사화 기반의 심전도 신호 압축)

  • Ryu, Chun-Ha;Kim, Tae-Hun;Lee, Byung-Gook;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.653-659
    • /
    • 2011
  • In general, electrocardiogram(ECG) signals are sampled with a frequency over 200Hz and stored for a long time. It is required to compress data efficiently for storing and transmitting them. In this paper, a method for compression of ECG data is proposed, using by Non Uniform B-spline approximation, which has been widely used to approximation theory of applied mathematics and geometric modeling. ECG signals are compressed and reconstructed using B-spline basis function which curve has local controllability and control a shape and curve in part. The proposed method selected additional knot with each step for minimizing reconstruction error and reduced time complexity. It is established that the proposed method using B-spline approximation has good compression ratio and reconstruct besides preserving all feature point of ECG signals, through the experimental results from MIT-BIH Arrhythmia database.

A Study on Performance Improvement of ECG Data Compression Algorithm (심전도 데이터 압축 알고리즘의 성능개선에 관한 연구)

  • Lee, Byung-Chae;Hwang, Seon-Cheol;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.163-170
    • /
    • 1990
  • In this paper, fast Fourier transform and fast Walsh transform algorithm are studied for ECG data compression. ECG data-12 bit samples digitized at 480 samples-are segmented into QRS complexes and 50 intervals by di%ital derivative filter, which used for detection of QS width and difrerenre compressed in Fourler or welsh domain. And also the existing techniques for data compression-TP, MTP, CORTES, AZTEC, MCORTES, which have not been evaluated with a common measurement of goodness, were processed to get absolute terms of values in the same condition.

  • PDF

A Comparative Study of Compression Methods and the Development of CODEC Program of Biological Signal for Emergency Telemedicine Service (응급 원격 진료 서비스를 위한 생체신호 압축 방법 비교 연구 및 압축/복원 프로그램 개발)

  • Yoon Tae-Sung;Lim Young-Ho;Kim Jung-Sang;Yoo Sun-Kook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.311-321
    • /
    • 2003
  • In an emergency telemedicine system such as the High-quality Multimedia based Real-time Emergency Telemedicine(HMRET) service, it is very important to examine the status of the patient continuously using the multimedia data including the biological signals(ECG, BP, Respiration, $SpO_2)$ of the patient. In order to transmit these data real time through the communication means which have the limited transmission capacity, it is also necessary to compress the biological data besides other multimedia data. For this purpose, we investigate and compare the ECG compression techniques in the time domain and in the wavelet transform domain, and present an effective lossless compression method of the biological signals using PEG Huffman table for an emergency telemedicine system. And, for the HMRET service, we developed the lossless compression and reconstruction program or the biological signals in MSVC++ 6.0 using DPCM method and JPEG Huffman table, and tested in an internet environment.

ECG Data Compression Using Adaptive Fractal Interpolation (적응 프랙탈 보간을 이용한 심전도 데이터 압축)

  • 전영일;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.121-128
    • /
    • 1996
  • This paper presents the ECG data compression method referred the adaptive fractal interpolation algorithm. In the previous piecewise fractal interpolation(PFI) algorithm, the size of range is fixed So, the reconstruction error of the PFI algorithm is nonuniformly distributed in the part of the original ECG signal. In order to improve this problem, the adaptive fractal interpolation(AEI) algorithm uses the variable range. If the predetermined tolerance was not satisfied, the range would be subdivided into two equal size blocks. large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are U for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. The AEI algorithm was found to yield a relatively low reconstruction error for a given compression ratio than the PFI algorithm. In applications where a PRD of about 7.13% was acceptable, the ASI algorithm yielded compression ratio as high as 10.51, without any entropy coding of the parameters of the fractal code.

  • PDF

Curvature Based ECG Signal Compression for Effective Communication on WPAN

  • Kim, Tae-Hun;Kim, Se-Yun;Kim, Jeong-Hong;Yun, Byoung-Ju;Park, Kil-Houm
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As electrocardiogram (ECG) signals are generally sampled with a frequency of over 200 Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently on a wireless personal area network (WPAN). In this paper, an ECG signal compression method for communications onWPAN, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, and T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes were extracted with the proposed method, which uses local extrema of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes were added according to the iterative vertex selectionmethod. Through the experimental results on the ECG signals from Massachusetts Institute of Technology-Beth Israel hospital arrhythmia database, it was concluded that the vertexes selected by the proposed method preserved all feature points of the ECG signals. In addition, it was more efficient than the amplitude zone time epoch coding method.

ECG Compression Structure Design Using of Multiple Wavelet Basis Functions (다중웨이브렛 기저함수를 이용한 심전도 압축구조설계)

  • Kim Tae-hyung;Kwon Chang-Young;Yoon Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.467-472
    • /
    • 2005
  • ECG signals are recorded for diagnostic purposes in many clinical situations. Also, In order to permit good clinical interpretation, data is needed at high resolutions and sampling rates. Therefore In this paper, we designed to compression structure using multiple wavelet basis function(SWBF) and compared to single wavelet basis function(SWBF) and discrete cosine transform(DCT). For experience objectivity, Simulation was performed using the arrhythmia data with sampling frequency 360Hz, resolution lIbit at MIT-BIH database. An estimate of performance estimate evaluate the reconstruction error. Consequently compression structure using MWBF has high performance result.