• Title/Summary/Keyword: ECG classification

Search Result 137, Processing Time 0.026 seconds

Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM (합성곱-장단기 기억 신경망의 하이브리드 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Arrhythmia is a condition in which the heart beats abnormally or irregularly, early detection is very important because it can cause dangerous situations such as fainting or sudden cardiac death. However, performance degradation occurs due to personalized differences in ECG signals. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-LSTM. For this purpose, the R wave is detected from noise removed signal and a single bit segment was extracted. It consisted of eight convolutional layers to extract the features of the arrhythmia in detail, used them as the input of the LSTM. The weights were learned through deep learning and the model was evaluated by the verification data. The performance was compared in terms of the accuracy, precision, recall, F1 score through MIT-BIH arrhythmia database. The achieved scores indicate 92.3%, 90.98%, 92.20%, 90.72% in terms of the accuracy, precision, recall, F1 score, respectively.

A ResNet based multiscale feature extraction for classifying multi-variate medical time series

  • Zhu, Junke;Sun, Le;Wang, Yilin;Subramani, Sudha;Peng, Dandan;Nicolas, Shangwe Charmant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1431-1445
    • /
    • 2022
  • We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.

DIAGNOSING CARDIOVASCULAR DISEASE FROM HRV DATA USING FP-BASED BAYESIAN CLASSIFIER

  • Lee, Heon-Gyu;Lee, Bum-Ju;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.868-871
    • /
    • 2006
  • Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.

  • PDF

A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification (심전도 신호기반 개인식별을 위한 텐서표현의 다선형 판별분석기법)

  • Lim, Won-Cheol;Kwak, Keun-Chang
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.90-98
    • /
    • 2018
  • A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification Electrocardiogram signals, included in the cardiac electrical activity, are often analyzed and used for various purposes such as heart rate measurement, heartbeat rhythm test, heart abnormality diagnosis, emotion recognition and biometrics. The objective of this paper is to perform individual identification operation based on Multilinear Linear Discriminant Analysis (MLDA) with the tensor feature. The MLDA can solve dimensional aspects of classification problems in high-dimensional tensor, and correlated subspaces can be used to distinguish between different classes. In order to evaluate the performance, we used MPhysionet's MIT-BIH database. The experimental results on this database showed that the individual identification by MLDA outperformed that by PCA and LDA.

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

Analyzing Heart Rate Variability for Automatic Sleep Stage Classification (수면단계 자동분류를 위한 심박동변이도 분석)

  • 김원식;김교헌;박세진;신재우;윤영로
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • Sleep stages have been useful indicator to check a person's comfortableness in a sleep, But the traditional method of scoring sleep stages with polysomnography based on the integrated analysis of the electroencephalogram(EEG), electrooculogram(EOG), electrocardiogram(ECG), and electromyogram(EMG) is too restrictive to take a comfortable sleep for the participants, While the sympathetic nervous system is predominant during a wakefulness, the parasympathetic nervous system is more active during a sleep, Cardiovascular function is controlled by this autonomic nervous system, So, we have interpreted the heart rate variability(HRV) among sleep stages to find a simple method of classifying sleep stages, Six healthy male college students participated, and 12 night sleeps were recorded in this research, Sleep stages based on the "Standard scoring system for sleep stage" were automatically classified with polysomnograph by measuring EEG, EOG, ECG, and EMG(chin and leg) for the six participants during sleeping, To extract only the ECG signals from the polysomnograph and to interpret the HRV, a Sleep Data Acquisition/Analysis System was devised in this research, The power spectrum of HRV was divided into three ranges; low frequency(LF), medium frequency(MF), and high frequency(HF), It showed that, the LF/HF ratio of the Stage W(Wakefulness) was 325% higher than that of the Stage 2(p<.05), 628% higher than that of the Stage 3(p<.001), and 800% higher than that of the Stage 4(p<.001), Moreover, this ratio of the Stage 4 was 427% lower than that of the Stage REM (rapid eye movement) (p<.05) and 418% lower than that of the Stage l(p<.05), respectively, It was observed that the LF/HF ratio decreased monotonously as the sleep stage changes from the Stage W, Stage REM, Stage 1, Stage 2, Stage 3, to Stage 4, While the difference of the MF/(LF+HF) ratio among sleep Stages was not significant, it was higher in the Stage REM and Stage 3 than that of in the other sleep stages in view of descriptive statistic analysis for the sample group.

  • PDF

Classification of the PVC Using The Fuzzy-ART Network Based on Wavelet Coefficient (웨이브렛 계수에 근거한 Fuzzy-ART 네트워크를 이용한 PVC 분류)

  • Park, K. L;Lee, K. J.;lee, Y. S.;Yoon, H. R.
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.435-442
    • /
    • 1999
  • A fuzzy-ART(adaptive resonance theory) network for the PVC(premature ventricular contraction) classification using wavelet coefficient is designed. This network consists of the feature extraction and learning of the fuzzy-ART network. In the first step, we have detected the QRS from the ECG signal in order to set the threshold range for feature extraction and the detected QRS was divided into several frequency bands by wavelet transformation using Haar wavelet. Among the low-frequency bands, only the 6th coefficient(D6) are selected as the input feature. After that, the fuzzy-ART network for classification of the PVC is learned by using input feature which comprises of binary data converted by applying threshold to D6. The MIT/BIH database including the PVC is used for the evaluation. The designed fuzzy-ART network showed the PVC classification ratio of 96.52%.

  • PDF

Research on the modified algorithm for improving accuracy of Random Forest classifier which identifies automatically arrhythmia (부정맥 증상을 자동으로 판별하는 Random Forest 분류기의 정확도 향상을 위한 수정 알고리즘에 대한 연구)

  • Lee, Hyun-Ju;Shin, Dong-Kyoo;Park, Hee-Won;Kim, Soo-Han;Shin, Dong-Il
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.341-348
    • /
    • 2011
  • ECG(Electrocardiogram), a field of Bio-signal, is generally experimented with classification algorithms most of which are SVM(Support Vector Machine), MLP(Multilayer Perceptron). But this study modified the Random Forest Algorithm along the basis of signal characteristics and comparatively analyzed the accuracies of modified algorithm with those of SVM and MLP to prove the ability of modified algorithm. The R-R interval extracted from ECG is used in this study and the results of established researches which experimented co-equal data are also comparatively analyzed. As a result, modified RF Classifier showed better consequences than SVM classifier, MLP classifier and other researches' results in accuracy category. The Band-pass filter is used to extract R-R interval in pre-processing stage. However, the Wavelet transform, median filter, and finite impulse response filter in addition to Band-pass filter are often used in experiment of ECG. After this study, selection of the filters efficiently deleting the baseline wandering in pre-processing stage and study of the methods correctly extracting the R-R interval are needed.

A Modified Length-Based Grading Method for Assessing Coronary Artery Calcium Severity on Non-Electrocardiogram-Gated Chest Computed Tomography: A Multiple-Observer Study

  • Suh Young Kim;Young Joo Suh;Na Young Kim;Suji Lee;Kyungsun Nam;Jeongyun Kim;Hwan Kim;Hyunji Lee;Kyunghwa Han;Hwan Seok Yong
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.284-293
    • /
    • 2023
  • Objective: To validate a simplified ordinal scoring method, referred to as modified length-based grading, for assessing coronary artery calcium (CAC) severity on non-electrocardiogram (ECG)-gated chest computed tomography (CT). Materials and Methods: This retrospective study enrolled 120 patients (mean age ± standard deviation [SD], 63.1 ± 14.5 years; male, 64) who underwent both non-ECG-gated chest CT and ECG-gated cardiac CT between January 2011 and December 2021. Six radiologists independently assessed CAC severity on chest CT using two scoring methods (visual assessment and modified length-based grading) and categorized the results as none, mild, moderate, or severe. The CAC category on cardiac CT assessed using the Agatston score was used as the reference standard. Agreement among the six observers for CAC category classification was assessed using Fleiss kappa statistics. Agreement between CAC categories on chest CT obtained using either method and the Agatston score categories on cardiac CT was assessed using Cohen's kappa. The time taken to evaluate CAC grading was compared between the observers and two grading methods. Results: For differentiation of the four CAC categories, interobserver agreement was moderate for visual assessment (Fleiss kappa, 0.553 [95% confidence interval {CI}: 0.496-0.610]) and good for modified length-based grading (Fleiss kappa, 0.695 [95% CI: 0.636-0.754]). The modified length-based grading demonstrated better agreement with the reference standard categorization with cardiac CT than visual assessment (Cohen's kappa, 0.565 [95% CI: 0.511-0.619 for visual assessment vs. 0.695 [95% CI: 0.638-0.752] for modified length-based grading). The overall time for evaluating CAC grading was slightly shorter in visual assessment (mean ± SD, 41.8 ± 38.9 s) than in modified length-based grading (43.5 ± 33.2 s) (P < 0.001). Conclusion: The modified length-based grading worked well for evaluating CAC on non-ECG-gated chest CT with better interobserver agreement and agreement with cardiac CT than visual assessment.

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.