• 제목/요약/키워드: ECG analysis system

검색결과 170건 처리시간 0.02초

QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템 (An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection)

  • 이대석;;정완영
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

An ECG Monitoring and Analysis Method for Ubiquitous Healthcare System in WSN

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.7-11
    • /
    • 2007
  • The aim of this paper is to design and implement a new ECG signal monitoring and analysis method for the home care of elderly persons or patients, using wireless sensor network (WSN) technology. The wireless technology for home-care purpose gives new possibilities for monitoring of vital parameter with wearable biomedical sensors and will give the patient freedom to be mobile and still be under continuously monitoring. Developed platform for portable real-time analysis of ECG signals can be used as an advanced diagnosis and alarming system. The ECG features are used to detect life-threatening arrhythmias, with an emphasis on the software for analyzing the P-wave, QRS complex, and T-wave in ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server transfer diagnostic results and alarm conditions to a doctor's PDA. Doctor can diagnose the patients who have survived from arrhythmia diseases.

ECG 분석을 위한 R-R interval 탐지 시스템 (The R-R interval detection system for ECG analysis)

  • 김영섭;홍성호;지용석;이명석;노학엽
    • 정보통신설비학회논문지
    • /
    • 제11권2호
    • /
    • pp.29-33
    • /
    • 2012
  • ECG widely used in cardiac function test is a graph that is recorded by measuring the electrical impulses occurred in the heart. Normal ECG has the form of similar sections that are repeated, and each section has the information occurred in a heart beat. Thus, In order to make the correct diagnosis, correct grasp of the sections and formed analysis must be done. In this research, a system that detects the sections of ECG is proposed. The system is based on ECG stored in the form of files. The ECG can easily have a noise caused by an outside factor. The noise of ECG is easily caused by external factors. Through a band-pass filter, it can be removed. and then, to get this ECG without a noise, interval detection algorithm using R-peak is applied. The clean, intuitive interface will help the above functions to be used without any difficulties.

  • PDF

퍼지 프로세서를 이용한 심전도 판별 시스템 개발 (Development of ECG Identification System Using the Fuzzy Processor)

  • 장원석;이응혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권4호
    • /
    • pp.403-414
    • /
    • 1995
  • 심전도 분석은 심장 전문의마다 기준이 다르고, 심전도 처리 시스템마다 측정된 변수 검출오차 때문에 많은 어려움이 있다. 이에 본 논문에서는 심전도 식별과정에서 발생하는 애매 모호성을 줄여주고, 불규칙한 심전도를 구간의 빈번도에 따라 통계학적으로 분석될 수 있도록 디지털 퍼지 프로세서를 사용한 STD-BUS용 실시간 심전도 신호 식별 시스템을 설계.제작하였다. 심전도를 판별하기 위해 사용된 변수는 나이, QRS폭, 평균 RRI, RRI등을 사용하였고, 이들 변수를 본 연구에서 제작한 심전도 신호 식별 시스템에 입력으로 사용한 결과, 일반 프로세서의 알고리즘에서 구별이 불가능했던 심전도 파형을 실시간으로 식별이 가능함을 확인할 수 있었다.

  • PDF

실시간 심전도 분석 및 모니터링 시스템 개발 (Development of Realtime ECG Analysis and Monitoring System)

  • 정구영;윤명종;유기호
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.406-412
    • /
    • 2009
  • ECG is used on purpose to keep good health or monitor cardiac function of aged person as well as on purpose to diagnose the disease of heart patients. The ambulatory ECG monitoring system under guarantee of safety and accuracy is very efficient to prevent the progress of heart disease and sudden death. These systems can detect the temporary change of ECG that is very significant to diagnose heart disease such as myocardial ischemia, arrhyamia and cardiac infarction. In this paper, we describe the ECG signal analysis algorithm and measurement device for ECG monitoring. The authors designed a small-size portable ECG device that consisted of instrumentation amplifier, micro-controller, filter and RF module. The device measures ECG with four electrodes on the body and detects QRS complex and ST level change in realtime. Also it transmits the measured signals to the personal computer. The developed software for ECG analysis in personal computer has the function to detect the feature points and ST level changes.

긴급환자 상황인식 및 분석을 위한 무선 ECG모니터링 시스템 (A Wireless ECG monitoring System for Application in Life Emergency Event Detection and Analysis)

  • ;이대석;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.421-425
    • /
    • 2006
  • 헬스케어와 무선 기술의 접목은 새로운 생체신호 모니터링 방법과 환자의 이동성 및 편의성을 제공하며 더 나은 방법으로 환자를 돌볼 수 있으며 이러한 장점으로 인해 최근 무선기술을 이용한 ECG 모니터링 및 계측 시스템이 개발되고 있다. 본 논문에서는 중요한 생체신호 중 가장 중요한 신호의 하나인 ECG 신호를 무선센서네트워크를 이용하여 무선으로 받은 후, 이를 서버컴퓨터에서 의사, 간호사 또는 환자의 보호자에게 진단의 기초자료로 제공할 수 있게 빈맥, 서맥, 동정지와 같은 비정상적인 ECG신호를 판단하는 ECG 모니터링 시스템을 구현하였다. 신체에서 계측된 ECG신호는 무선으로 서버와 RS-232로 연결된 베이스스테이션으로 전송되고 서버는 비정상적인 ECG 신호를 검사하여 저장 및 모니터링을 위해 PC/PDA로 데이터를 전송하며, 이러한 시스템을 활용하여 의료비 절감 및 더 편리한 의료서비스를 받을 수 있을 것으로 예상된다.

  • PDF

Accurate and Energy Efficient ECG Analysis Method for ECG Monitoring System

  • Zeng, Min;Lee, Jeong-Gun;Chung, Il-Yong;Lee, Jeong-A
    • 한국통신학회논문지
    • /
    • 제37권5C호
    • /
    • pp.403-409
    • /
    • 2012
  • This paper proposes an energy efficient ECG monitoring system by putting some intelligence on the sensor node to reduce the number of transmissions. The sensor node is mostly put into the processing mode and just connects the base station when necessary. Therefore, the transmission energy is greatly reduced while the energy for processing is increased a little bit. Our proposed ECG analysis method classifies ECG cycles by computing the Euclidean distance between the sensed ECG cycle and the reference ECG cycle. This work is a detailed and full explanation of our former work. Extended experimental results show that the proposed trade is very effective in saving energy and the Euclidean distance based classification method is accurate. Furthermore, the PowerTOSSIM energy simulation method is also demonstrated as very accurate in evaluating the energy consumption of the sensor node in our application scenario.

A Combined QRS-complex and P-wave Detection in ECG Signal for Ubiquitous Healthcare System

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.98-103
    • /
    • 2007
  • Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.

태아 ECG 추출 기능을 가지는 모바일 심전도 측정 시스템 설계 (Mobile ECG Measurement System Design with Fetal ECG Extraction Capability)

  • 최철형;김영필;김시경;유정봉;서봉균
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.431-438
    • /
    • 2017
  • In this paper, the abdomen ECG(AECG) is employed to measure the mother's ECG instead of the conventioanl thoracic ECG measurement. The fetus ECG signal can be extracted from the AECG using an algorithm that utilizes the mobile fetal ECG measurement platform, which is based on the BLE (Bluetooth Low Energy). The algorithm has been implemented by using a replacement processor processed directly from the platform BLE instead of the large statistical data processing required in the ICA(Independent component analysis). The proposed algorithm can be implemented on a mobile BLE wireless ECG system hardware platform to process the maternal ECG. Wireless technology can realize a compact, low-power radio system for short distance communication and the IOT(Intenet of Things) enables the transmission of real-time ECG data. It was also implemented in the form of a compact module in order for mothers to be able to download and store the collected ECG data without having to interrupt or move the logger, and later link the module to a computer for downloading and analyzing the data. A mobile ECG measurement prototype is manufactured and tested to measure the FECG for pregnant women. The experimental results verify a real-time FECG extraction capability for the proposed system. In this paper, we propose an ECG measurement system that shows approximately 91.65% similarity to the MIT database and the conventional algorithm and SNR performance about 10% better.

생체 인식 시스템을 위한 심전도 개인인식 알고리즘 개발 (Development of Electrocardiogram Identification Algorithm for a Biometric System)

  • 이상준;김진권;이영범;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권5호
    • /
    • pp.365-374
    • /
    • 2010
  • This paper is about the personal identification algorithm using an ECG that has been studied by a few researchers recently. Previously published algorithm can be classified as two methods. One is the method that analyzes ECG features and the other is the morphological analysis of ECG. The main characteristic of proposed algorithm uses together two methods. The algorithm consists of training and testing procedures. In training procedure, the features of all recognition objects' ECG were extracted and the PCA was performed for morphological analysis of ECG. In testing procedure, 6 candidate ECG's were chosen by morphological analysis and then the analysis of features among candidate ECG's was performed for final recognition. We choose 18 ECG files from MIT-BIH Normal Sinus Rhythm Database for estimating algorithm performance. The algorithm extracts 100 heartbeats from each ECG file, and use 40 heartbeats for training and 60 heartbeats for testing. The proposed algorithm shows clearly superior performance in all ECG data, amounting to 90.96% heartbeat recognition rate and 100% ECG recognition rate.