• Title/Summary/Keyword: ECG Analysis

Search Result 375, Processing Time 0.026 seconds

Spectral Analysis of the ECG Using the Improved ARMA FTF Algorithm (개선된 ARMA FTF 알고리즘을 이용한 ECG 신호의 스펙트럼 해석)

  • Nam, Hyeon-Do;An, Dong-Jun;Lee, Cheol-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.395-400
    • /
    • 1994
  • High resolution spectral analysis is essential for ECG anaysis. The fast Fourier transform has been widely used for frequency analysis of ECG signals but this procedure provides poor resolution when the data record is short and shows Gibb's phenomena. The ARMA FTF (Fast Transversal Filter) algorithm is used for high resolution spectral analysis. The reason of unsalability of this algorithm is investigated and the method for improving the numerical stability is proposed. The proposed algorithm is applied to spectral analysis of the ECG. Since this result has less variations than the FFT based results, it can be used for the computerized diagonosis of the ECG.

  • PDF

A Basic Study on the signal Processing and Analysis of ECG (심전도 신호처리 및 분석에 관한 기초연구)

  • 정구영;권대규;유기호;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.294-294
    • /
    • 2000
  • In this paper, we would like to discuss the signal processing and the algorithm for ECG analysis. The ECG gives us information about the condition of the heart muscle, because myocardial abnormality or infarction is inscribed on the ECG during myocardial depolarization and repolarization. Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. The wavelet transform decomposes the ECG signal into high and low frequency component using wavelet function. Recomposing high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the curve-fitting partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with some kinds of heart disease ECG pattern, we can detect and classify the kind of heart disease.

  • PDF

Development of Electrocardiogram Identification Algorithm for a Biometric System (생체 인식 시스템을 위한 심전도 개인인식 알고리즘 개발)

  • Lee, Sang-Joon;Kim, Jin-Kwon;Lee, Young-Bum;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 2010
  • This paper is about the personal identification algorithm using an ECG that has been studied by a few researchers recently. Previously published algorithm can be classified as two methods. One is the method that analyzes ECG features and the other is the morphological analysis of ECG. The main characteristic of proposed algorithm uses together two methods. The algorithm consists of training and testing procedures. In training procedure, the features of all recognition objects' ECG were extracted and the PCA was performed for morphological analysis of ECG. In testing procedure, 6 candidate ECG's were chosen by morphological analysis and then the analysis of features among candidate ECG's was performed for final recognition. We choose 18 ECG files from MIT-BIH Normal Sinus Rhythm Database for estimating algorithm performance. The algorithm extracts 100 heartbeats from each ECG file, and use 40 heartbeats for training and 60 heartbeats for testing. The proposed algorithm shows clearly superior performance in all ECG data, amounting to 90.96% heartbeat recognition rate and 100% ECG recognition rate.

An ECG Monitoring and Analysis Method for Ubiquitous Healthcare System in WSN

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The aim of this paper is to design and implement a new ECG signal monitoring and analysis method for the home care of elderly persons or patients, using wireless sensor network (WSN) technology. The wireless technology for home-care purpose gives new possibilities for monitoring of vital parameter with wearable biomedical sensors and will give the patient freedom to be mobile and still be under continuously monitoring. Developed platform for portable real-time analysis of ECG signals can be used as an advanced diagnosis and alarming system. The ECG features are used to detect life-threatening arrhythmias, with an emphasis on the software for analyzing the P-wave, QRS complex, and T-wave in ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server transfer diagnostic results and alarm conditions to a doctor's PDA. Doctor can diagnose the patients who have survived from arrhythmia diseases.

An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection (QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템)

  • Lee, Dae-Seok;Bhardwaj, Sachin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

Technique for the ECG Bio-sounds Visualization Analysis Based on the MIT-BIH Database (MIT-BIH 데이터베이스 기반 ECG 생체신호 시각화 분석을 위한 기술)

  • Kim, Jong-Wook;Lee, Myoung-Jin;Ko, Kwang-Man;So, Kyoung-Young
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • This work introduces techniques experienced for the electrocardiogram(ECG) visual analysis, able to characterize the major parameters and events with clinical relevance for heart failure management and cardiovascular risk assessment. In particular, it includes approaches for ECG data visual processing such as the variable charts, graphs base on the complex MIT-BIH ECG database. Through the experienced this works of ECG database visualization, so many researcher more easily access the complex ECG database and can intuitionally understand the meanings via a variable ECG visualized data.

Polynomial Approximation Approach to ECG Analysis and Tele-monitoring (다항식 근사를 이용한 심전도 분석 및 원격 모니터링)

  • Yu, Kee-Ho;Jeong, Gu-Young;Jung, Sung-Nam;No, Tae-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.42-47
    • /
    • 2001
  • Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. In this paper, we would like to introduce the signal processing for ECG analysis and the device made for wireless communication of ECG data. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the polynomial approximation partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with the database, we can detect and classify the heart disease. The ECG detection device consists of amplifier, filters, A/D converter and RF module. After amplification and filtering, the ECG signal is fed through the A/D converter to be digitalized. The digital ECG data is transmitted to the personal computer through the RF transceiver module and serial port.

  • PDF

Development of Realtime ECG Analysis and Monitoring System (실시간 심전도 분석 및 모니터링 시스템 개발)

  • Jeong, Gu-Young;Yoon, Myoung-Jong;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.406-412
    • /
    • 2009
  • ECG is used on purpose to keep good health or monitor cardiac function of aged person as well as on purpose to diagnose the disease of heart patients. The ambulatory ECG monitoring system under guarantee of safety and accuracy is very efficient to prevent the progress of heart disease and sudden death. These systems can detect the temporary change of ECG that is very significant to diagnose heart disease such as myocardial ischemia, arrhyamia and cardiac infarction. In this paper, we describe the ECG signal analysis algorithm and measurement device for ECG monitoring. The authors designed a small-size portable ECG device that consisted of instrumentation amplifier, micro-controller, filter and RF module. The device measures ECG with four electrodes on the body and detects QRS complex and ST level change in realtime. Also it transmits the measured signals to the personal computer. The developed software for ECG analysis in personal computer has the function to detect the feature points and ST level changes.

Development of Electrocardiogram Identification Algorithm using SVM classifier (SVM분류기를 이용한 심전도 개인인식 알고리즘 개발)

  • Lee, Sang-Joon;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.654-661
    • /
    • 2011
  • This paper is about a personal identification algorithm using an ECG that has been studied by a few researchers recently. Previously published algorithm can be classified as two methods. One is the method that analyzes of ECG features and the other is the morphological analysis of ECG. The main characteristic of proposed algorithm can be classified the method of analysis ECG features. Proposed algorithm adopts DSTW(Down Slope Trace Wave) for extracting ECG features, and applies SVM(Support Vector Machine) to training and testing as a classifier algorithm. We choose 18 ECG files from MIT-BIH Normal Sinus Rhythm Database for estimating of algorithm performance. The algorithm extracts 100 heartbeats from each ECG file, and use 40 heartbeats for training and 60 heartbeats for testing. The proposed algorithm shows clearly superior performance in all ECG data, amounting to 93.89% heartbeat recognition rate and 100% ECG recognition rate.

Signal Analysis According to the Position of the ECG Sensor Electrode in Healthcare Backpack (헬스케어 가방의 ECG 센서 전극 위치에 따른 신호 분석)

  • Lee, Hyeon-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.402-408
    • /
    • 2014
  • Heart rate is one of the most important signal to monitor the health condition of the patient or exerciser. Various wearable devices have been developed for the continuous monitoring of ECG signal from human body during exercise. Among these, ECG chest belt has been widely used. However wearing chest belt with ECG sensor is uncomfortable in normal life due to the electrode contact between metal electrodes of ECG sensor and skin of the human body. So we develop the royal healthcare backpack that can measure ECG signal without skin contact by using capacitor-type ECG sensor. The position of the measurement point is critical to collect a clear ECG signal in the capacitive ECG measurement from backpack. Various tests were conducted to find the optimal ECG measurement position which has less noise and could get strong and clear ECG signal during exercise, walking, hiking, mountain climbing and cycling.