• 제목/요약/키워드: ECCS

검색결과 59건 처리시간 0.026초

DES를 이용한 가압경수로의 비상노심냉각계통 고장진단 (Failure Diagnosis of PWR-ECCS using Discrete Event System)

  • 김희표;박준효;김칠수;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.594-597
    • /
    • 2001
  • As many industrial systems become more complex, they become extremely difficult to diagnose the cause of failures. The subject of this paper is ECCS(Emergency Core Cooling System) part of PWR(Pressurized Water Reactor). This paper presents modeling and diagnoser construction of ECCS based on discrete event system theory. Also, this paper presents that the ECCS system is diagnosible in our approach.

  • PDF

원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구 (Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS).)

  • 송도인;최영돈;박민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF

A Preliminary Analysis of Large Loss-of-Coolant Induced by Emergency Core Coolant Pipe Break in CANDU-600 Nuclear Power Plant

  • Ion, Robert-Aurelian;Cho, Yong-Jin;Kim, In-Goo;Kim, Kyun-Tae;Lee, Jong-In
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.435-440
    • /
    • 1996
  • Large Loss-of-Coolant Accidents analyzed in Final Safety Analysis Reports are usually covered by Reactor Inlet Header. Reactor Outlet Header and Primary Pump Suction breaks as representative cases. In this study we analyze the total (guillotine) break of an Emergency Core Cooling System (ECCS) pipe located at the ECCS injection point into the Primary Heat Transport System (PHTS). It was expected that thermal-hydraulic behaviors in the PHT and ECC systems are different from those of a Reactor Inlet Header break, having an equivalent break size. The main purpose of this study is to get insights on the differences occurred between the two cases and to assess these differences from the phenomenon behavior point of view. It was also investigated whether the ECCS line break analysis results could be covered by header break analysis results. The study reveals that as the intact loop has almost the same behavior in both analyzed cases. broken loop behavior is different mostly regarding sheath temperature in the critical core pass and pressure decrease in the broken Reactor Inlet Header. Differences are also met in the ECCS behavior and in event sequences timings.

  • PDF

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

난류침투가 사각단면 T분기관 내 누설유동에 의해 발생한 열성층 현상에 미치는 영향 (The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Leaking Flow in a T-Branch of Square Cross-Section)

  • 홍석우;최영돈;박민수
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.239-245
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. $textsc{k}$-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of the main flow in the duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from the main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Novel Trusted Hierarchy Construction for RFID Sensor-Based MANETs Using ECCs

  • Kumar, Adarsh;Gopal, Krishna;Aggarwal, Alok
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.186-196
    • /
    • 2015
  • In resource-constrained, low-cost, radio-frequency identification (RFID) sensor-based mobile ad hoc networks (MANETs), ensuring security without performance degradation is a major challenge. This paper introduces a novel combination of steps in lightweight protocol integration to provide a secure network for RFID sensor-based MANETs using error-correcting codes (ECCs). The proposed scheme chooses a quasi-cyclic ECC. Key pairs are generated using the ECC for establishing a secure message communication. Probability analysis shows that code-based identification; key generation; and authentication and trust management schemes protect the network from Sybil, eclipse, and de-synchronization attacks. A lightweight model for the proposed sequence of steps is designed and analyzed using an Alloy analyzer. Results show that selection processes with ten nodes and five subgroup controllers identify attacks in only a few milliseconds. Margrave policy analysis shows that there is no conflict among the roles of network members.

Tailoring ECC for Special Attributes: A Review

  • Li, Victor C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.135-144
    • /
    • 2012
  • This article reviews the tailoring of engineered cementitious composites (ECC), a type of high performance fiber reinforced cementitious composites with a theoretical design basis, for special attributes or functions. The design basis, a set of analytic tools built on micromechanics, provides guidelines for tailoring of fiber, matrix, and fiber/matrix interfaces to attain tensile ductility in ECC. If conditions for controlled multiple cracking are disturbed by the need to introduce ingredients to attain a special attribute or function, micromechanics then serve as a systematic and rational means to efficiently recover composite tensile ductility. Three examples of ECCs with attributes of lightweight, high early strength, and self-healing functions, are used to illustrate these tailoring concepts. The fundamental approach, however, is broadly applicable to a wide variety of ECCs designed for targeted fresh and/or hardened characteristics required for specific applications.

컴팩트 디스크를 위한 Reed Solomon 부호기/복호기 설계 (Design of Reed Solomon Encoder/Decoder for Compact Disks)

  • 김창훈;박성모
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.281-284
    • /
    • 2000
  • This paper describes design of a (32, 28) Reed Solomon decoder for optical compact disk with double error detecting and correcting capability. A variety of error correction codes(ECCs) have been used in magnetic recordings, and optical recordings. Among the various types of ECCs, Reed Solomon(RS) codes has emerged as one the most important ones. The most complex circuit in the RS decoder is the part for finding the error location numbers by solving error location polynomial, and the circuit has great influence on overall decoder complexity. We use RAM based architecture with Euclid's algorithm, Chien search algorithm and Forney algorithm. We have developed VHDL model and peformed logic synthesis using the SYNOPSYS CAD tool. The total umber of gate is about 11,000 gates.

  • PDF

Best Estimate Small Break LOCA Analysis for KNGR SIS Optimization

  • Song, Jin-Ho;Lim, Hong-Sik;Bae, Kyoo-Hwan;Lee, Joon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.417-422
    • /
    • 1996
  • The KNGR has an advanced ECCS design feature which employs four mechanically-separated SI trains where each train consisting of one HPSI pump and one SIT injects ECC water directly into the reactor vessel downcomer annulus. To demonstrate that the KNGR ECCS design features meet the EPRI ALWR requirements of no core uncovery for a break of up to 6 inch diameter, small break LOCA cases with various break sizes were analyzed using a best-estimate analytical procedure. Two kinds of break locations are considered: cold leg and DVI line breaks. It was observed that the KNGR ECC design can tolerate a cold leg break of up to 10 inches with no core uncovery. However. since DVI line break with 6 inch diameter undergoes slight core uncovery. further investigation is required for KNGR SIS optimization.

  • PDF