• Title/Summary/Keyword: ECC ElGamal

Search Result 6, Processing Time 0.023 seconds

A Study on a Shared Key Existence of ECC Based Key Distribution System (ECC 키분배에서 공유키 존재에 관한 연구)

  • Lee, Jun;Park, Jong-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.476-482
    • /
    • 2009
  • As a result from Hasse's theorem it is not always possible to share a common key between any two ECC public keys. Even though ECC algorithm is more efficient than any other Encryption's with respect to the encryption strength per bit, ECC ElGamal algorithm can not be used to distribute a common key to ECC PKI owners. Approaching mathematical ways in a practical situation, we suggest possible conditions to share a common key with ECC PKI's. Using computer experiments, we also show that these suggestions are right. In the conditions, we can distribute a common key to proper peoples with ECC ElGamal algorithm.

A Study on the Design of Secure Messenger Using ECC of ElGamal Method in PKI Environment (PKI환경에서 ElGamal 방식의 ECC를 이용한 안전한 메신저 설계에 관한 연구)

  • Park Su-Young;Choi Kwang-Mi;Jung Choi-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1443-1448
    • /
    • 2006
  • As computers and networks become popular, distributing information on the Internet is common in our daily life. In the past, e-mail has been the primary choice of exchanging information but messengers are gaining popularity abroad and domestically because of their nature of getting immediate responses. Information leakage by invasion that is enemy of evil in communication of communications division Server and Agent between each agents that become burden of communication for effective administration of data for most of existing messenger is becoming an issue. In this paper, we design a secure messenger system that could be obtained maximum security. It use ECC based on ElGamal methodology using PKI for secure communication. For the message encryption and decryption between the same group non, each group is kept distinct by drawing an elliptic curve and an arbitrary point is chosen on the curve.

Design and Implement of Secure Instant Message System Using ECC of ElGamal Method on Public Key Infrastructure (공개키 기반 구조에서 ElGamal 방식의 ECC를 이용한 안전한 인스턴트 메시지 시스템 설계 및 구현)

  • Park Su-Young;Jung Chang-Yeoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.955-958
    • /
    • 2006
  • 초고속인터넷이 널리 보급되면서 최근 메신저 서비스(Messenger Service)를 이용하는 사용자가 폭발적으로 증가하고, 해킹 기술의 발달로 인하여 메신저를 통하여 전달되는 메시지들이 악의의 사용자에게 쉽게 노출될 수 있는 가증서도 커지고 있다. 본 논문에서는 인스턴트 메신저의 안전한 통신을 위해 인증서를 이용한 인스턴트 메신저 프로토콜에 대해 설계하였다. 또한 메신저 서비스에서의 메시지 보안을 구현함에 있어서 공개키 암호 알고리즘의 연산수행시간을 단축하기 위해 ElGamal 방식의 ECC(Elliptic Curve Cryptography) 알고리즘을 사용하고, 사용자 그룹 단위의 암호화를 위해 그룹별로 타원곡선과 그 위에 있는 임의의 점을 선택하여 다른 그룹과 구별하였다.

  • PDF

A Fast Multiplier of Composite fields over finite fields (유한체의 합성체위에서의 고속 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.389-395
    • /
    • 2011
  • Since Elliptic Curve Cryptosystems(ECCs) support the same security as RSA cryptosystem and ElGamal cryptosystem with 1/6 size key, ECCs are the most efficient to smart cards, cellular phone and small-size computers restricted by high memory capacity and power of process. In this paper, we explicitly explain methods for finite fields operations used in ECC, and then construct some composite fields over finite fields which are secure under Weil's decent attack and maximize the speed of operations. Lastly, we propose a fast multiplier over our composite fields.

An Efficient Hardware Implementation of Square Root Computation over GF(p) (GF(p) 상의 제곱근 연산의 효율적인 하드웨어 구현)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1321-1327
    • /
    • 2019
  • This paper describes an efficient hardware implementation of modular square root (MSQR) computation over GF(p), which is the operation needed to map plaintext messages to points on elliptic curves for elliptic curve (EC)-ElGamal public-key encryption. Our method supports five sizes of elliptic curves over GF(p) defined by the National Institute of Standards and Technology (NIST) standard. For the Koblitz curves and the pseudorandom curves with 192-bit, 256-bit, 384-bit and 521-bit, the Euler's Criterion based on the characteristic of the modulo values was applied. For the elliptic curves with 224-bit, the Tonelli-Shanks algorithm was simplified and applied to compute MSQR. The proposed method was implemented using the finite field arithmetic circuit with 32-bit datapath and memory block of elliptic curve cryptography (ECC) processor, and its hardware operation was verified by implementing it on the Virtex-5 field programmable gate array (FPGA) device. When the implemented circuit operates with a 50 MHz clock, the computation of MSQR takes about 18 ms for 224-bit pseudorandom curves and about 4 ms for 256-bit Koblitz curves.

A Study on a Group Key Agreement using a Hash Function (해쉬 함수를 이용한 그룹키 합의에 관한 연구)

  • Lee, Jun;Kim, In-Taek;Park, Jong-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.627-634
    • /
    • 2010
  • In this paper we suggest a group key agreement protocol among a group consisting more than 3 PKIs. From an 128 bit message, we produce a group key to any length size using a hash function. With a computer experiment we found that PKI's encryption/decryption time is the most dominant part of this procedure and an 160 bit ECC PKI is the most efficient system for distributing an 128 bit message in practical level. We implement this procedure over an unsecure multi user chatting system which is an open software. And we also show that this suggestion could be practically used in military business without a hardware implementation.