• Title/Summary/Keyword: ECB(Eddy Current Brake)

Search Result 12, Processing Time 0.031 seconds

Design and Analysis of Eddy-Current Braker for High-Speed Train (고속전철 와전류 제동장치 설계와 특성해석 및 실험)

  • 정수진;강도현;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.659-663
    • /
    • 2002
  • The brake systems of high-speed train are to be equipped with three different brake systems, such as regenerative brake with regenerative feedback in driving car, a pneumatic disc brake, and non-contact linear eddy-current brake(ECB). The regenerative brake and the pneumatic disc brake are acting on the wheels. Their achievable braking force depends on the adhesive coefficient, which is influenced by the weather condition and speed, between the wheel and The linear eddy current brake gets an economical solution in the high-speed train because of the independence of the adhesive coefficient, no maintenance needed. and the good control characteristics. The braking force and the normal force of ECB for korean high-speed train are analysed by the 2D FEM(Finite Element Method). Finally the normal force is compared with the experiential values to verify the analysis.

The Study on Shield Moving ECB with PM for Application of Railway Vehicle (영구자석을 이용한 Shield moving형 와전류 제동기의 철도시스템 적용연구)

  • Lee, Chang-Mu;Han, Kyung-Hee;Choi, Yu-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1737-1741
    • /
    • 2014
  • The railway ECB(Eddy Current Brake) is used for high speed vehicle of railway like as TGV, ICE, JR-500 because it has stable braking force at high speed. But it is not effective at low speed and it is difficult to save energy due to the excitation of electro-magnet. Although ECB with permanent magnet is used for roller-coaster, it can not control the braking force without clutch. In this paper, the shield moving ECB with PM is proposed for application of railway vehicle. The angle of shield can be changed for various braking force. It changes the flux amount from PM, then the braking force will be reduced. The brake of 800W is simulated by using the software, "Ansoft Maxwell". The characteristics of braking will be shown by the shapes of magnet, disk and various speeds.

A Study On the Design and Constant Torque Control of the Eddy Current Brake For a High-speed Railway Train (고속전철용 와전류제동장치의 설계 및 정토크 제어에 관한 연구)

  • Ryu, Hong-Je;Gang, Gyeong-Ho;U, Myeong-Ho;Kim, Jong-Su;Gang, Do-Hyeon;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.611-616
    • /
    • 1999
  • The introduction of the eddy current braking(ECB) system in HSRT(high speed railway train) is known to be advantageous, in that the system is independent on wheel-rail adhesion coefficient which is greatly affected by weather condition. It also minimize the maintenance of the brake system and does not require any additional electric energy because it is powered form the regenerated power at the time of the braking. In this study, the braking and attraction forces of the ECB are simulated by 2-D FEM and are experimentally verified on a down-scaled prototype. A control algorithm of the ECB is proposed to generate constant braking torque using linear variation of the reference current according to speed. Experimental results shows that the constant torque is generated over all operating speed region by developed control algorithm.

  • PDF

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Optimal torque control of noncontact type eddy current brake system (비접촉식 와전류형 제동 장치의 최적 토오크 제어)

  • 이갑진;박기환;류제하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • A contactless eddy current type braking system is developed to take advantages of the recent brake system which uses hydraulic force can show high efficiency in a certain velocity region, but not in a high velocity region, and has initial response delay time and pressure build-up time which make stopping distance longer. These are the limits of mechanical brake system of a contact type, which makes a concept brake system required. So, in this paper, the contactless brake system .of a inductive current type is chosen instead of hydraulic brake system. This brake system can be used almost forever for being no wear and contributed to lightening weight of a vehicle. Besides, the contactless brake system can be used as that of electric or solar car with anti-lock brake system. The analysis of induced electromotive force and braking torque obtained with theoretical approximate model, the design of a braking system and a nonlinear controller, and the results of simulation of the ABS, experiment are included.

  • PDF

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;T. Benker
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.318.1-318
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body fur the carbody was implemented in the Multi-Body-Simulation Program Simpack. (omitted)

  • PDF

Torque Analysis of Axial Flux PM Type Eddy Current Brake (영구자석형 와전류제동기의 토크 특성 해석)

  • Shin, Hyeon-Jae;Choi, Jang-Young;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1019-1020
    • /
    • 2011
  • This paper deals with torque analysis of axial flux permanent magnet (AFPM) type eddy current brake (ECB) based on analytical field computation. On the basis of a magnetic vector potential and a two-dimensional (2-D) polar coordinate system, analytical solutions for normal and tangential flux density due to permanent magnet (PM) considering eddy current effect are obtained. And then, using derived analytical field solutions, braking torque and normal force characteristics according to rotor speed are also predicted. A three-dimensional (3-D) finite element (FE) analysis is employed to confirm the validity of analyses.

  • PDF

A Study on the Performances of Hybrid type Electric Brake System (하이브리드형 전기식 제동장치의 성능에 대한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lim, Chul-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1492-1498
    • /
    • 2003
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes problems of a conventional hydraulic brake system. HEBS adopt a contactless type bake system when a vehicle speed is high, to obtain superior braking performances by eddy current. On the contrary, when a vehicle speed is low, HEBS employs a contact type brake system such as conventional hydraulic brake system to generate higher brake force. Therefore, HEBS transfers faster the braking intention of drivers and guarantees the safety of drivers. Braking torque analysis is performed by using a mathematical model which is proposed to investigate the characteristic of a vehicle dynamics when the brake torque is applied. Optimal torque control is achieved by maintaining a desired slip corresponding to the road condition. The results show that HEBS reduces the stopping distance, saves the electric energy, and increases the stability.

The study on the Temperature Characteristics on Shield Moving ECB with PM for Application of Railway Vehicle (철도시스템 적용을 위한 영구자석형 Shield moving형 와전류 제동기의 온도 특성에 관한 연구)

  • Jung, Hwan-Su;Han, Kyung-Hee;Lee, Chang-Mu;Jang, Gil-Su
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1603-1604
    • /
    • 2015
  • ECB(Eddy Current Brake)는 철도시스템의 고속에서 제동력을 안정적으로 나타낼 수 있어서 TGV, ICE, JR-500등과 같은 철도에서 사용되고 있다. 하지만 저속에서는 효율적이지 못하고, 전자석은 경량성에 대한 문제와 에너지를 소비한다는 단점을 가지고 있다. 이 논문에서는 제안된 영구자석형 Shield moving형 와전류 제동기를 사용하였다. 이 와전류 제동기는 Shield의 각을 이동하여 제동력을 조절할 수 있으며 영구자석을 이용함으로서 전자석의 단점을 보안하였다. 하지만 영구자석은 온도에 대해 영향을 받을 수 있으므로 온도 특성은 전류밀도(J(A/m2))와 자속밀도(T)를 'Ansoft Maxell'을 시뮬레이션하여 확인하였다.

  • PDF