• Title/Summary/Keyword: E3 ligase

Search Result 125, Processing Time 0.024 seconds

Biosynthesis of Two Hydroxybenzoic Acid-Amine Conjugates in Engineered Escherichia coli

  • Kim, Song-Yi;Kim, Han;Kim, Bong-Gyu;Ahn, Joong-Hoonc
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1636-1643
    • /
    • 2019
  • Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and N-2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using Escherichia coli. While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (ubiC), tyrosine decarboxylase (TyDC), isochorismate synthase (entC), isochorismate pyruvate lyase (pchB), and tryptophan decarboxylase (TDC) for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in E. coli. Genes for CoA ligase (hbad) and amide formation (CaSHT and OsHCT) were also introduced to form hydroxybenzoic acid and amine conjugates. In addition, we engineered E. coli to provide increased substrates. These approaches led to the yield of 259.3 mg/l 4-HBT and 227.2 mg/l 2-HBT and could be applied to synthesize diverse bioactive hydroxybenzoyl amine conjugates.

RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

  • Cho, Seok Keun;Ryu, Moon Young;Kim, Jong Hum;Hong, Jeong Soo;Oh, Tae Rin;Kim, Woo Taek;Yang, Seong Wook
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.393-400
    • /
    • 2017
  • Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants.

E3 ubiquitin ligases and deubiquitinases as modulators of TRAIL-mediated extrinsic apoptotic signaling pathway

  • Woo, Seon Min;Kwon, Taeg Kyu
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) initiates the extrinsic apoptotic pathway through formation of the death-inducing signaling complex (DISC), followed by activation of effector caspases. TRAIL receptors are composed of death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and osteoprotegerin. Among them, only DRs activate apoptotic signaling by TRAIL. Since the levels of DR expressions are higher in cancer cells than in normal cells, TRAIL selectively activates apoptotic signaling pathway in cancer cells. However, multiple mechanisms, including down-regulation of DR expression and pro-apoptotic proteins, and up-regulation of anti-apoptotic proteins, make cancer cells TRAIL-resistant. Therefore, many researchers have investigated strategies to overcome TRAIL resistance. In this review, we focus on protein regulation in relation to extrinsic apoptotic signaling pathways via ubiquitination. The ubiquitin proteasome system (UPS) is an important process in control of protein degradation and stabilization, and regulates proliferation and apoptosis in cancer cells. The level of ubiquitination of proteins is determined by the balance of E3 ubiquitin ligases and deubiquitinases (DUBs), which determine protein stability. Regulation of the UPS may be an attractive target for enhancement of TRAIL-induced apoptosis. Our review provides insight to increasing sensitivity to TRAIL-mediated apoptosis through control of post-translational protein expression.

The Expression Patterns of Human Parkin in E. codi and Mammalian Cells (대장균과 포유류 세포 내에서 parkin의 발현 양상에 관한 연구)

  • Nam Min-Kyung;Park Hye-Min;Choi Ju-Youn;Park Hyo-Jin;Chung Kwang Chul;Kang Seong man;Rhim Hyangshuk
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.916-922
    • /
    • 2005
  • Parkin, known as an E3 ubiquitin ligase, has essential role in protein quality control, and its severe dysfunction leads to neurodegenerative disorders. Human Parkin was excessively degraded when expressed in Escherichia coli under the conventional induction condition ($37^{\circ}C$ culture condition with 0.5 mM IPTG). To optimize the induction and culture conditions for recombinant human Parkin and develop a rapid method for the Parkin purification, we expressed Parkin by using PCEX system at the different culture temperatures and IPTC concentrations. The intact Parkin protein was purified to approximately $90\%$ purity with suitable amounts of protein under the optimal culture condition ($25^{\circ}C$E with 0.01 mM IPTG). Additionally, we constructed various parkin plasmids with different tagging systems and investigated their expression patterns in HEK293 cells. We found that the proteolytically sensitive site is localized within a ubiquitin-like domain of Parkin. This study developes a method for generating useful reagents to investigate biochemical properties of Parkin.

The COP9 Signalosome Network in Eukaryotic Microorganisms (진핵 미생물에서의 COP9 signalosome의 역할)

  • Cheon, Yeongmi;Lee, Soojin
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • COP9 signalosome (CSN), which is originally identified as the regulator of the photomorphogenic development in plant, is highly conserved protein complex in diverse eukaryotic organisms. Most eukaryotic CSN complex is composed of 8 subunits, which is structurally and functionally similar to the lid subunit of 26S proteasome and eIF3 translation initiation complex. CSN play important functions in the regulation of cell cycle and checkpoint response by controlling Cullin-Ring E3 ubiquitin ligases (CRL) activities. CSN exhibits an isopeptidase activity which cleaves the neddylated moiety of cullin components. In fission yeast, S-phase cell cycle progression was delayed and the sensitivity to g-ray or UV was increased in CSN1 and CSN2 deletion mutants, indicating that yeast CSN is also involved in the checkpoint regulation. CSN in fungal system more closely resembles that of the higher organisms in the structure and assembly of their components. Functionally, CSN is associated with the regulation of conidiation rhythms in Neurospora crassa and the sexual development in Aspsergillus nidulans. Recent studies also revealed that CSN functions as an essential cell cycle regulator, playing key roles in the regulation of DNA replication and DNA damage response in Aspergillus. Overall, CSN of microorganisms, such as fission yeast and fungi, share functionally common aspects with higher organisms, implying that they can be useful tools to study the role of CSN in the CRL-mediated diverse cellular activities.

Proteomic characterization of differentially expressed proteins associated with no stress in retinal ganglion cells

  • Kim, Jum-Ji;Kim, Yeon-Hyang;Lee, Mi-Young
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.456-461
    • /
    • 2009
  • Proteomic analyses of differentially expressed proteins in rat retinal ganglion cells (RGC-5) following S-nitrosoglutathione (GSNO), an NO donor, treatment were conducted. Of the approximately 314 protein spots that were detected, 19 were differentially expressed in response to treatment with GSNO. Of these, 14 proteins were up-regulated and 5 were down- regulated. Notably, an increase in GAPDH expression following GSNO treatment was detected in RGC-5 cells through Western blotting as well as proteomics. The increased GAPDH expression in response to GSNO treatment was accompanied by an increase in Herc6 protein, an E3 ubiquitin ligase. Moreover, GSNO treatment resulted in the translocation of GADPH from the cytosol to the nucleus and its subsequent accumulation. These results suggest that NO stress-induced apoptosis may be associated with the nuclear translocation and accumulation of GAPDH in RGC-5 cells.

Mind Bomb1 and DeltaD are Localized into Autophagosome after Endocytosis in Zebrafish during Neurogenesis

  • Kim, Min-Jung
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.215-221
    • /
    • 2011
  • Endocytosis of the Notch ligand, DeltaD, by mind bomb1 is indispensable for activation of Notch in cell fate determination, proliferation, and differentiation during zebrafish neurogenesis. Loss of mind bomb1 activity as an E3 Ubiquitin ligase causes the accumulation of deltaD at the plasma membrane and results in the ectopic neurogenic phenotype by activation of Notch in early zebrafish embryogenesis. However, the regulatory mechanism of deltaD during neurogenesis is not identified yet. This study aims to analyze the pathway of mib1 and deltaD after endocytosis in vivo during zebrafish embryogenesis. Mind bomb1 and deltaD are co-localized into autophagosome and mutant form of mind bomb1 fails to cargo deltaD into autophagosomes. These findings suggest that mind bomb I mediates deltaD regulation by autophagy in an ubiquitin-dependent manner during zebrafish embryogenesis.

Synergistic effect of two E2 ubiquitin conjugating enzymes in SCFhFBH1 catalyzed polyubiquitination

  • Kim, Jeong-Hoon;Choi, Jin Sun;Kim, Sunhong;Kim, Kidae;Myung, Pyung Keun;Park, Sung Goo;Seo, Yeon-Soo;Park, Byoung Chul
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.25-29
    • /
    • 2015
  • Ubiquitination is a post translational modification which mostly links with proteasome dependent protein degradation. This process has been known to play pivotal roles in the number of biological events including apoptosis, cell signaling, transcription and translation. Although the process of ubiquitination has been studied extensively, the mechanism of polyubiquitination by multi protein E3 ubiquitin ligase, SCF complex remains elusive. In the present study, we identified UbcH5a as a novel stimulating factor for poly-ubiquitination catalyzed by $SCF^{hFBH1}$ using biochemical fractionations and MALDI-TOF. Moreover, we showed that recombinant UbcH5a and Cdc34 synergistically stimulate $SCF^{hFBH1}$ catalyzed polyubiquitination in vitro. These data may provide an important cue to understand the mechanism how the SCF complex efficiently polyubiquitinates target substrates.

Synthesis of Methylated Anthranilate Derivatives Using Engineered Strains of Escherichia coli

  • Lee, Hye Lim;Kim, Song-Yi;Kim, Eun Ji;Han, Da Ye;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.839-844
    • /
    • 2019
  • Anthranilate derivatives have been used as flavoring and fragrant agents for a long time. Recently, these compounds are gaining attention due to new biological functions including antinociceptive and analgesic activities. Three anthranilate derivatives, N-methylanthranilate, methyl anthranilate, and methyl N-methylanthranilate were synthesized using metabolically engineered stains of Escherichia coli. NMT encoding N-methyltransferase from Ruta graveolens, AMAT encoding anthraniloyl-coenzyme A (CoA):methanol acyltransferase from Vitis labrusca, and pqsA encoding anthranilate coenzyme A ligase from Pseudomonas aeruginosa were cloned and E. coli strains harboring these genes were used to synthesize the three desired compounds. E. coli mutants (metJ, trpD, tyrR mutants), which provide more anthranilate and/or S-adenosyl methionine, were used to increase the production of the synthesized compounds. MS/MS analysis was used to determine the structure of the products. Approximately, $185.3{\mu}M$ N-methylanthranilate and $95.2{\mu}M$ methyl N-methylanthranilate were synthesized. This is the first report about the synthesis of anthranilate derivatives in E. coli.

Construction of Complementary DNA Library and cDNA Cloning for Cy Strain of Odontoglossum Ringspot Virus Genomic RNA (오돈토글로썸 윤문 바이러스 Cy계통 게놈 RNA의 cDNA 구축 및 유전자 크로닝)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 1994
  • Genomic RNA was extracted from Cy strain of odontoglossum ringspot tobamovirus (ORSV-Cy) isolated from infected leaves of tobacco cv. Samsun. Size of the genomic RNA was about 6.6 kb in length. The genomic RNA was fractionated using Sephadex G-50 column chromatography into 2 fractions. They were polyadenylated at their 3'-end using E. coli poly(A) polymerase. Polyadenylated viral RNA was recovered by oligo (dT) primer adapter containing NotI restriction site and Moloney murine leukemia virus SuperScript reverse transcriptase (RNase H-). Second-strand cDNA was synthesized by using E. coli DNA ligase, E. coli DNA polymerase I and E. coli RNase H. Recombinant plasmids containing cDNAs for ORSV-Cy RNA ranged from about 800 bp to 3,000 bp. Among the selected 238 recombinants, pORCY-124 clone was the largest one covering 3'-terminal half of the viral RNA. This clone contained two restriction sites for EcoRI and XbaI and one site for AccI, AvaI, BglII, BstXI, HindIII, PstI, and TthIII 1. respectively. The clone contained partial viral replicase, a full-length movement protein and a complete coat protein genes followed by a 3' untranslated region of 414 nucleotides based on restriction mapping and nucleotide sequencing analyses. Clones pORCY-028, -068, -072, -187 and -224 were overlapped with the pORCY-124. Clones pORCY-014 and -095 covered 5' half upstream from the middle region of the viral RNA, which was estimated based on restriction mapping and partial sequence analysis. Constructed cDNA library covered more than 90% of the viral genome.

  • PDF