Synergistic effect of two E2 ubiquitin conjugating enzymes in SCFhFBH1 catalyzed polyubiquitination |
Kim, Jeong-Hoon
(Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Choi, Jin Sun (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) Kim, Sunhong (Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) Kim, Kidae (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) Myung, Pyung Keun (College of Pharmacy, Chungnam National University) Park, Sung Goo (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) Seo, Yeon-Soo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) Park, Byoung Chul (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) |
1 | Jung JH, Bae S, Lee JY et al (2011) E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53. Cell Death Differ 18, 1865-1875 DOI ScienceOn |
2 | Paltoglou S and Roberts BJ (2007) HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene 26, 604-609 DOI ScienceOn |
3 | Mastrandrea LD, You J, Niles EG and Pickart CM (1999) E2/E3-mediated assembly of lysine 29-linked polyubiquitin chains. J Biol Chem 274, 27299-27306 DOI |
4 | Deshaies RJ and Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434 DOI ScienceOn |
5 | Ryu KS, Choi YS, Ko J et al (2008) Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system. BMB Rep 41, 852-857 DOI ScienceOn |
6 | Dignam JD, Lebovitz RM and Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11, 1475-1489 DOI ScienceOn |
7 | Ye Y and Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10, 755-764 DOI ScienceOn |
8 | Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583 DOI |
9 | Komander D and Rape M (2012) The ubiquitin code. Annu Rev Biochem 81, 203-229 DOI ScienceOn |
10 | Kim JH, Kim J, Kim DH et al (2004) SCFhFBH1 can act as helicase and E3 ubiquitin ligase. Nucleic Acids Res 32, 2287-2297 DOI ScienceOn |
11 | Yaron A, Hatzubai A, Davis M et al (1998) Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396, 590-594 DOI ScienceOn |
12 | Schulman BA and Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10, 319-331 DOI ScienceOn |
13 | Tan P, Fuchs SY, Chen A et al (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell 3, 527-533 DOI ScienceOn |
14 | Carrano AC, Eytan E, Hershko A and Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1, 193-199 DOI |
15 | Jeong YT, Rossi M, Cermak L et al (2013) FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress. J Cell Biol 200, 141-149 DOI |
16 | Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS and Liberi G (2007) The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27, 7439-7450 DOI ScienceOn |
17 | Wu K, Kovacev J and Pan ZQ (2010) Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 37, 784-796 DOI ScienceOn |