Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.1.057

Synergistic effect of two E2 ubiquitin conjugating enzymes in SCFhFBH1 catalyzed polyubiquitination  

Kim, Jeong-Hoon (Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Choi, Jin Sun (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Kim, Sunhong (Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Kim, Kidae (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Myung, Pyung Keun (College of Pharmacy, Chungnam National University)
Park, Sung Goo (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Seo, Yeon-Soo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Park, Byoung Chul (Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Publication Information
BMB Reports / v.48, no.1, 2015 , pp. 25-29 More about this Journal
Abstract
Ubiquitination is a post translational modification which mostly links with proteasome dependent protein degradation. This process has been known to play pivotal roles in the number of biological events including apoptosis, cell signaling, transcription and translation. Although the process of ubiquitination has been studied extensively, the mechanism of polyubiquitination by multi protein E3 ubiquitin ligase, SCF complex remains elusive. In the present study, we identified UbcH5a as a novel stimulating factor for poly-ubiquitination catalyzed by $SCF^{hFBH1}$ using biochemical fractionations and MALDI-TOF. Moreover, we showed that recombinant UbcH5a and Cdc34 synergistically stimulate $SCF^{hFBH1}$ catalyzed polyubiquitination in vitro. These data may provide an important cue to understand the mechanism how the SCF complex efficiently polyubiquitinates target substrates.
Keywords
E2 ubiquitin conjugating enzyme; hFBH1; Polyubiquitination; SCF; Ubiquitin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jung JH, Bae S, Lee JY et al (2011) E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53. Cell Death Differ 18, 1865-1875   DOI   ScienceOn
2 Paltoglou S and Roberts BJ (2007) HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene 26, 604-609   DOI   ScienceOn
3 Mastrandrea LD, You J, Niles EG and Pickart CM (1999) E2/E3-mediated assembly of lysine 29-linked polyubiquitin chains. J Biol Chem 274, 27299-27306   DOI
4 Deshaies RJ and Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434   DOI   ScienceOn
5 Ryu KS, Choi YS, Ko J et al (2008) Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system. BMB Rep 41, 852-857   DOI   ScienceOn
6 Dignam JD, Lebovitz RM and Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11, 1475-1489   DOI   ScienceOn
7 Ye Y and Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10, 755-764   DOI   ScienceOn
8 Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583   DOI
9 Komander D and Rape M (2012) The ubiquitin code. Annu Rev Biochem 81, 203-229   DOI   ScienceOn
10 Kim JH, Kim J, Kim DH et al (2004) SCFhFBH1 can act as helicase and E3 ubiquitin ligase. Nucleic Acids Res 32, 2287-2297   DOI   ScienceOn
11 Yaron A, Hatzubai A, Davis M et al (1998) Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396, 590-594   DOI   ScienceOn
12 Schulman BA and Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10, 319-331   DOI   ScienceOn
13 Tan P, Fuchs SY, Chen A et al (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell 3, 527-533   DOI   ScienceOn
14 Carrano AC, Eytan E, Hershko A and Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1, 193-199   DOI
15 Jeong YT, Rossi M, Cermak L et al (2013) FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress. J Cell Biol 200, 141-149   DOI
16 Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS and Liberi G (2007) The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27, 7439-7450   DOI   ScienceOn
17 Wu K, Kovacev J and Pan ZQ (2010) Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 37, 784-796   DOI   ScienceOn