• 제목/요약/키워드: E2 gene

Search Result 2,352, Processing Time 0.027 seconds

Investigation of gene-gene interactions of clock genes for chronotype in a healthy Korean population

  • Park, Mira;Kim, Soon Ae;Shin, Jieun;Joo, Eun-Jeong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.38.1-38.9
    • /
    • 2020
  • Chronotype is an important moderator of psychiatric illnesses, which seems to be controlled in some part by genetic factors. Clock genes are the most relevant genes for chronotype. In addition to the roles of individual genes, gene-gene interactions of clock genes substantially contribute to chronotype. We investigated genetic associations and gene-gene interactions of the clock genes BHLHB2, CLOCK, CSNK1E, NR1D1, PER1, PER2, PER3, and TIMELESS for chronotype in 1,293 healthy Korean individuals. Regression analysis was conducted to find associations between single nucleotide polymorphism (SNP) and chronotype. For gene-gene interaction analyses, the quantitative multifactor dimensionality reduction (QMDR) method, a nonparametric model-free method for quantitative phenotypes, were performed. No individual SNP or haplotype showed a significant association with chronotype by both regression analysis and single-locus model of QMDR. QMDR analysis identified NR1D1 rs2314339 and TIMELESS rs4630333 as the best SNP pairs among two-locus interaction models associated with chronotype (cross-validation consistency [CVC] = 8/10, p = 0.041). For the three-locus interaction model, the SNP combination of NR1D1 rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed the best results (CVC = 4/10, p < 0.001). However, because the mean differences between genotype combinations were minor, the clinical roles of clock gene interactions are unlikely to be critical.

Cloning of a Alkaline Protease Gene from Xanthomonas sp. YL-37 (Xanthomonas sp. YL-37의 Alkaline Protease 유전자의 클로닝)

  • 이대희;김수경;이승철;윤병대;황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.145-149
    • /
    • 1995
  • For the purpose of developing a new biodegradable detergent, we have isolated a gene encoding wide-range temperature applicable alkaline protease from Xanthomonas sp. YL-37 (Lee et al., 1994, Kor. J. Appl. Microbiol. Biotechnol.). An alkaline protease gene was isolated from the gene bank that was prepared from the chromosomal DNA of Xanthomonas sp. YL-37. From the results of agarose gel electrophoresis and a restriction enzyme mapping, a 2.7 kb DNA fragment containing the alkaline protease gene was inserted in the plasmid pUC9. Extracellular activity of a clone having alkaline protease gene was detected on SDS-polyacrylamide gel with activity staining assay. The molecular weight of alkaline protease was determined to be about 64 kDa from 11% SDS-PAGE analysis. Alkaline protease activity, produced from E. coli which harboring the plasmid, showed no difference at reaction temperature 20, 30 and 40$\circ$C, respectively. This result showed that alkaline protease produced from E. coli harboring the plasmid was apparently the same as that of Xanthomonas sp. YL-37.

  • PDF

Cloning of Bacillus amyloliquefaciens amylase gene using YEp13 as a vector I. Expression of cloned amylase gene in Escherichia coli (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I. Escherichia coli에서의 발현)

  • 이창후;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.155-160
    • /
    • 1986
  • $\alpha$-Amylase gene of B. amyloliquefaciens was cloned to E. coli-yeast shuttle vector YEp-13 and expressed in E. coli. Chromosomal DNA of B. amyloliquefaciens was partially digested with Sau3Al and YEp13 plasmid was cleaved with BamH1. The hybrid plasmid, pHA28, was constructed by shotgun method and transformed to E. coli C600 and HB101. The amount of $\alpha$-amylase produced by transformants of E. coli was about 20% to 30% of that produced by B. amyloli-quefaciens. About 65% of $\alpha$-amylase produced by transformant was secreted into periplasm and the others were located in cytoplasm. $\alpha$-Amylase production was maximal when transformants were cultivated for 15hr to 20hr. As the result of agarose gel electrophoresis, pHA28 plasmid was found to be various in its size. This result suggested that pHA28 plasmid was segregated.

  • PDF

Methylation of p16 and E-cadherin in ameloblastoma (법랑아세포종에서 p16과 E-cadherin의 메틸화)

  • Park, Can-Woong;Yoon, Hye-Kyoung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.453-459
    • /
    • 2010
  • Introduction: Ameloblastic carcinoma is a rare malignant lesion, and may arise from either carcinoma ex-ameloblastoma or de novo carcinoma. Aberrant promoter hypermethylation of the tumor-associated genes leading to their inactivation is a common event in many cancer types. The p16/CDKN2/INK4A gene and p16 5 protein are involved directly in regulating the cell cycles. Cadherins are cell adhesion molecules that modulate the epithelial phenotype and regulate tumor invasion. The aim of this study was to evaluate the roles of p16 and E-cadherin methylation and loss of p16 and E-cadherin expression in the malignant transformation of an ameloblastoma. Materials and Methods: Eight cases of ameloblastoma, including 4 benign ameloblastomas without recurrence, 2 benign ameloblastomas with recurrence and 2 carcinoma ex-ameloblastomas, were examined. The promoter hypermethylation profile of the p16 and E-cadherin genes was studied using methylation-specific polymerase chain reaction (MSP) and immunohistochemical staining for p16 and E-cadherin expression. Results: 1) Aberrant CpG island methylation of the p16 gene was detected in 3 of the 4 benign ameloblastomas without recurrence and 1 of the 2 benign ameloblastomas with recurrence. 2) Aberrant CpG island methylation of the E-cadherin gene was found in 1 of the 4 benign ameloblastomas without recurrence. 3) A loss of p16 expression was noted in 1 of 4 benign ameloblastomas without recurrence and 1 of 2 carcinoma ex-ameloblastomas. 4) A loss of E-cadherin expression was noted in 2 of the 4 benign ameloblastomas without recurrence, 1 of the 2 benign ameloblastomas with recurrence and 2 of the 2 carcinoma ex-ameloblastomas. 5) A loss of p16 expression was observed in 1 of the 4 cases showing aberrant methylation of the p16 gene. 6) A loss of E-cadherin expression was observed in 3 benign ameloblastoma case showing aberrant methylation of the E-cadherin gene. Conclusion: These results suggest that loss of E-cadherin expression related to the other genetic pathway (not methylation) might be an adjuvant indicator predicting the malignant transformation of an ameloblastoma. However, the number of samples in this study was too small and the relationship between the treatment methods and clinical course were not defined. Therefore, further study will be needed.

Directed Causal Network Construction Using Linkage Analysis with Metabolic Syndrome-Related Expression Quantitative Traits

  • Kim, Kyee-Zu;Min, Jin-Young;Kwon, Geun-Yong;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.143-151
    • /
    • 2011
  • In this study, we propose a novel, intuitive method of constructing an expression quantitative trait (eQT) network that is related to the metabolic syndrome using LOD scores and peak loci for selected eQTs, based on the concept of gene-gene interactions. We selected 49 eQTs that were related to insulin resistance. A variance component linkage analysis was performed to explore the expression loci of each of the eQTs. The linkage peak loci were investigated, and the "support zone" was defined within boundaries of an LOD score of 0.5 from the peak. If one gene was located within the "support zone" of the peak loci for the eQT of another gene, the relationship was considered as a potential "directed causal pathway" from the former to the latter gene. SNP markers under the linkage peaks or within the support zone were searched for in the database to identify the genes at the loci. Two groups of gene networks were formed separately around the genes IRS2 and UGCGL2. The findings indicated evidence of networks between genes that were related to the metabolic syndrome. The use of linkage analysis enabled the construction of directed causal networks. This methodology showed that characterizing and locating eQTs can provide an effective means of constructing a genetic network.

Transformation of the Diatom Phaeodactylum tricornutum with its Endogenous (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase Gene (Phaeodactylum tricornutum의 (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase 유전자의 형질전환)

  • Shin, Bok-Kyu;Jung, Yu-Jin;Kim, Sang-Min;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.273-279
    • /
    • 2015
  • Phaeodactylum tricornutum is a model diatom that its genomic information and biological tools are well established. In this study, a gene encoding (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (PtHDR), a terminal enzyme of the methylerythritol phosphate pathway regulating chlorophyll and carotenoid biosynthesis, was isolated from P. tricornutum. The isolated gene was cloned into pPha-T1 vector containing fcpA promoter to prepare pPha-T1-HDR plasmid. As a positive control, pPha-T1-eGFP plasmid was constructed with egfp gene. Stable nuclear transformation was carried out with these plasmids by particle bombardment method and zeocin resistant colonies of P. tricornutum were selected on f/2 agar plate. In result, transformation efficiency was evaluated according to the amount of plasmid DNA coated with gold particles. Integration of introduced plasmids was confirmed with genomic DNA of each transformant by polymerase chain reaction. The eGFP fluorescence was visible in the cytoplasm, indicating that eGFP was successively expressed in P. tricornutum system. The transcript level of exogenous Pthdr gene was evaluated with the obtained transformants. The results presented here demonstrated that introduction of Pthdr gene into P. tricornutum chromosome succeeded and expression of PtHDR was enhanced under the fcpA promoter.

Expression and DNA Sequence of the Gene Coding for the lux-specific Fatty Acyl-CoA Reductase from photobacterium phosphoreum

  • Lee, Chan-Yong;Edward A. Meighen
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.80-87
    • /
    • 2000
  • The nucleotide sequence of the luxC gene coding for lux-specific fatty acyl-CoA reductase and the upstream DNA (325bp)of the structural gene from bioluminescent bacterium, Photobacterium phosphoreum, has been deternubed. An open reading frame extending for more than 20 codons in 325 bp DNA upstream of luxC was not present in both directions. The lux gene can be translated into a polypeptide of 54 kDa and the amino acid sequences of lux specific reductases of P. phosphoreum shares 80, 65, 58, and 62% identity with those of the Photobacterium leiognathi, Vibrio fischeri, Vibrio harveyi, and Xehnorhabdus luminescenens reductases, respectively. Analyses of codon usage, showing that a high frequency (2.3%) of the isoleucine codon, AUA, in the luxC gene compared to that found in Escherichia coli genes (0.2%) and its absence in the luxA and B genes, suggested that the AUA codon may play a modulator role in the expression of lux gene in E. coli. The structural genes (luxC, D, A, B, E) of the P. phosphoreum coding for luciferase (${\alpha}$,${\beta}$) and fatty acid reductase (r, s, t) polypeptides can be expressed exclusively in E. coli under the T7 phage RNA polymerase/promoter system and identificationof the [35S]methionine labelled polypeptide products. The degree of expression of lux genes in analyses of codon usage. High expression of the luxC gene could only be accomplished in a mutant E. coli 43R. Even in crude extracts, the acylated acyl-CoA reductase intermediate as well as acyl-CoA reductrase activities could be readily detected.

  • PDF

Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases (재조합 대장균에서 새로운 코엔자임 에이 트랜스퍼레이즈를 이용한 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구)

  • Kim, You Jin;Chae, Cheol Gi;Kang, Kyoung Hee;Oh, Young Hoon;Joo, Jeong Chan;Song, Bong Keun;Lee, Sang Yup;Park, Si Jae
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Several CoA transferases from Clostridium beijerinckii, C. perfringens and Klebsiella pneumoniae were examined for biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) in recombinant Escherichia coli XL1-Blue strain. The CB3819 gene and the CB4543 gene from C. beijerinckii, the pct gene from C. perfringens and the pct gene from K. pneumoniae, which encodes putative CoA transferase gene, respectively, was co-expressed with the Pseudomonas sp. MBEL 6-19 phaC1437 gene encoding engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) to examine its activity for the construction of key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli XL1-Blue expressing the phaC1437 gene and CB3819 gene synthesized poly(3-hydroxybutyrate) [P(3HB)] homopolymer to the P(3HB) content of 60.5 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 3-hydroxybutyrate. Expression of the phaC1437 gene and CB4543 gene in recombinant E. coli XL1-Blue also produced P(3HB) homopolymer to the P(3HB) content of 51.2 wt% in the same culture condition. Expression of the phaC1437 gene and the K. pneumoniae pct gene in recombinant E. coli XL1-Blue could not result in the production of PHAs in the same culture condition. However, the recombinant E. coli XL1-Blue expressing the phaC1437 gene and the C. perfringens gene could produce poly(3-hydroxybutyrate-co-lactate [P(86.4mol%3HB-co-13.7 mol%LA) up to the PHA content of 10.6 wt% in the same culture condition. Newly examined CoA transfereases in this study may be useful for the construction of engineered E. coli strains to produce PHA containing novel monomer such lactate.

Cloning and Transctiption of Excherichia coli Cell Division Gene, sep (E. coli 세포분열 유전자 sep의 Cloning 및 Transcription에 관한 연구)

  • ;Walker, James R.
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 1984
  • Sep gene, which is one of the cell division genes coding for penicillin binding protein 3 was subcloned from ${\lambda}607sep^{+2}$ to plasmid pBR322. which has a strong promotor such as lac UV5(lacP). It was confirmed that the sep gene cloned to pLJ3 was in the proper orientation for expressionfrom lactose promotor. To analyze the expression efficiency of sep gene within the plasmids newly constructed, sep mRNA was assated by using ${\lambda$\mid$\;607sep^{+2}$ DNA as a probe. Sep mRNA level was increased 25 times in the cells carrying sep gene cloned to pBR322 compared to E. coli C600 which has wild type sep gene within the chromosome instead of plasmed. Furthermore, the cells carrying sep gene cloned to pLJ3 derected the synthesis of about 50 times as much sep mRNA as did cells carrying sep gene cloned to pBR 322, representing that the sep gene was successfully cloned to pLJ3.

  • PDF