• 제목/요약/키워드: E2 enzyme

검색결과 1,378건 처리시간 0.03초

Association between SMAD2 Gene and Serum Liver Enzyme Levels in the Korean Population

  • Ahn, Hyo-Jun;Sull, Jae Woong;Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제19권2호
    • /
    • pp.124-131
    • /
    • 2013
  • Genome-wide association studies (GWAS) have identified a number of common variants associated with serum liver enzyme homeostasis in population. In the previous study, single nucleotide polymorphisms (SNPs) in several genes have been reported to be associated with serum liver enzyme levels in European population. We aimed to confirm whether the genetic variation of SMAD2 (SMAD family member 2) gene influence the serum liver enzyme levels in Korean population. We genotyped variants in or near SMAD2 in a population-based sample including 994 unrelated Korean adult. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in SMAD2 gene with serum liver enzyme levels. By examining genotype data of a total of 944 subjects in 5 hospital health promotion center, we discovered the SMAD2 gene polymorphisms are associated with serum liver enzyme levels. The common and highest significant polymorphism was rs17736760 (${\beta}$=3.51, P=5.31E-07) with glutamic oxaloacetic transferase (GOT), rs17736760 (${\beta}$=5.99, P=1.25E-05) with glutamic pyruvate transaminase (GPT), and rs17736760 (${\beta}$=15.68, P=9.93E-07) with gamma glutamyl transferase (GGT) in all group. Furthermore, the SNP rs17736760 was consistently associated with GOT (${\beta}$=5.25, P=1.72E-06), GPT (${\beta}$=9.97, P=1.16E-05), GGT (${\beta}$=26.13, P=3.43E-06) in men group. Consequently, we found statistically significant SNP in SMAD2 gene that are associated with serum levels of GOT, GPT, and GGT. In addition, these results suggest that the individuals with the minor alleles of the SNP in the SMAD2 gene may be more elevated serum liver enzyme levels in the Korean population.

Prostaglandin E Synthase, a Terminal Enzyme for Prostaglandin E2 Biosynthesis

  • Kudo, Ichiro;Murakami, Makoto
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.633-638
    • /
    • 2005
  • Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase $A_2$ enzymes, cyclooxygenase (COX) enzymes, and various lineage-specific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived $PGH_2$ specifically to $PGE_2$, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by anti inflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate $PGE_2$ production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.

Biochemical Properties of Starch Granule Non-Digestive Enzyme(SGNA) of Bacillus polymyxa No.26

  • Sohn, Cheon-Bae;Kim, Myung-Hee;Bae, Jung-Surl
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권3호
    • /
    • pp.189-196
    • /
    • 1992
  • A $\alpha$-l, 4-D-glucan maltohydrolase $(\beta$-amylase), secreted by the mesophilic aerobic bacterium Bacillus polymyxa No.26, was purified and characterized. The enzyme production was increased after a logarithmic phase of bacterial growth and paralleled with the onset of bacterial sporulation. By applying anion exchange chromatography and gel filtration the enzyme was purified 16.7-fold and had a specific activity of 285.7 units/mg. Two enzyme activities were eluted on a column of DEAE-Sephadex chromatography, and they were designated as E-I for a major enzyme peak and E-II for a minor peak. Of them, E-I enzyme peak was further purified by using gel chromatography. The molecular mass of this enzyme was determined to be 64, 000 daltons and consisted of a single subunit, showing an isoelectric point of 8.9. The enzyme was able to attack specifically the $\alpha$-l, 4-glycosidic linkages in soluble starch and caused its complete hydrolysis to maltose and $\beta$-limited dextrin. This amylolytic enzyme displayed a temperature optimum at $45^\circ{C}$ and a pH optimum at 7.0. The amino acid composition of the purified enzyme was quite similar to the other bacterial $\beta$-amylases reported. Surprisingly, the purified enzyme from this aerobe only exhibited hydrolytic activity on soluble starch, not on starch granules. The degradation of from starch by $\beta$-amylase was greatly stimulated by pullulanase addition. These results differentiated from other $\beta$-amylases reported. Based on a previous result that showed the enzyme system involves in effective degradation of raw starch granules, this result strongly suggested that the purified enzyme (E-I) can be a synergistic part of starch granule-digestion and E-II plays a crucial role in digestion of starch granules.

  • PDF

효소 저해법을 이용한 유기인계 및 Carbamate계 농약의 다성분 잔류 검출 (Detection for Multiresidue of the Organophosphorus and Carbamate Pesticides by Enzyme-Inhibition Method)

  • 김정호
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권3호
    • /
    • pp.265-272
    • /
    • 2002
  • Enzyme-Inhibition방법으로 다성분 잔류 농약의 검출 기법을 개발하기 위해, 음용수 허용기준 설정 농약인 유기인계 농약으로 malathion, parathion, diazinon과 carbamate농약으로 carbary에 대한 acetylcholinesterase (AChE)과 cholinesterase (ChE) 활성저해 관계를 규명하였다. 병아리 뇌의 AChE와 ChE 활성도는 각각 166.6 및 5.8$\mu$mol/min/g protein이었고, 혈장에서는 각각 23.1$\mu$mol/min/g protein과 8.3 $\mu$mol/min/g protein 이었다. AChE와 ChE의 최적 PH는 각각 8.2및 7.8 이었다. Km은 0.034 및 0.045 mM 이었다. 유기인계농약에서 AChE와 ChE의 I$_{50}$ 값의 malathion이 55.82 및 99.42mg/L이었고, Parathion은 31.16및 29.13mg/L이었고, diazinon은 17.89 및 19.62 mg/L 이었다. Carbamate농약인 carbaryl의 AChE와 ChE의 I$_{50}$ 값의 0.10및 0.05mg/L이었다. 먹는 물 관리법에 의한 carbaryl의 먹는 물 허용 수질기준인 0.07mg /L을 AChE와 ChE의 I$_{50}$에서 검출할 수 있다. AChE및 ChE을 이용한 enzyme-inhibition(EI)법은 carbamate농약인 carbaryl을 먹는 물 허용 수질기준인 0.07mg/L가지 검출 할 수 있으므로, 다성분 잔류분석법 (MRM, Multiresidue Method)으로 이용할 수 있다. 따라서 Enzyme lnhibition방법을 이용하여 자연환경 중 carbamate계 농약을 쉽고 빠르게 검출할 수 있는 새로운 bioassay법으로 응용할 수 있다. 수 있다.

The 2,3-Dihydroxybiphenyl 1,2-Dioxygenase Gene (phnQ) of Pseudomonas sp. DJ77: Nucleotide Sequence, Enzyme Assay, and Comparison with Isofunctional Dioxygenases

  • Kim, Seong-Jae;Shin, Hee-Jung;Park, Yong-Chjun;Kim, Young-Soo;Min, Kyung-Hee;Kim, Young-Chang
    • BMB Reports
    • /
    • 제32권4호
    • /
    • pp.399-404
    • /
    • 1999
  • 2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD), which catalyzes the ring meta-cleavage of 2,3-dihydroxybiphenyl, is encoded by the phnQ gene of biphenyl- and phenanthrene-degrading Pseudomonas sp. strain DJ77. We determined the nucleotide sequence of a DNA fragment of 1497 base pairs which included the phnQ gene. The fragment lncluded an open reading frame of 903 base pairs to accommodate the enzyme. The predicted amino acid sequence of the enzyme subunit consisted of 300 residues. In front of the gene, a sequence resembling an E. coli promoter was identified, which led to constitutive expression of the cloned gene in E. coli. The deduced amino acid sequence of the PhnQ enzyme exhibited 85.6% identity with that of the corresponding enzyme in Sphingomonas yanoikuyae Q1 (formerly S. paucimobilis Q1) and 22.1% identity with that of catechol 1,2,3-dioxygenase from the same DJ77 strain. PhnQ showed broader substrate preference than previously-cloned PhnE, catechol 2,3-dioxygenase. Ten amino acid residues, considered to be important for the role of extradiol dioxygenases, were conserved.

  • PDF

Partial Purification of Protein X from the Pyruvate Dehydrogenase Complex of Bovine Kidney

  • 류재하;허재욱;홍성열;송병준
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.260-260
    • /
    • 1994
  • Mammalian pyruvate dehydrogenase complex(PDC) enzyme consists of multiple oopies of three major oligomeric enzymes-El, E2 E3. And protein X is one of the enzymatic constituents which is tightly bound to E2 subunit This complex enzyme is responsible for the oxidative decarboxylation of pyruvate producing of acetyl CoA which is a key intermediate for the entry of carbohydrates into the TCA cycle for its complete metabolic conversion to CO$_2$. And the overall activity of the complex enzyme is regulated via covalent nodification of El subunit by a El specific phosphatase ad kinase. Protein X has lipoyl moiety that undergoes reduction and acetylation during ezymatic reaction and has been known h be involved in the binding of E3 subunit to E2 core and in the regulatory activity of kinase. The purification of protein X has not been achieved majorly because of its tight binding to E2 subunit The E2-protein X subcomplex was obtained by the established methods and the detachment of protein X from E2 was accomplished in the 0.1M borate buffer containing 150mM NaCl. During the storage of the subcomplex in frozen state at -70$^{\circ}C$, the E2 subunit was precipitated and the dissociated protein X was obtained by cntrifegation into the supernatant The verification of protein X was accomplished by (1)the migration on SDS-PAGE, (2)acetylation by 〔2$\^$-l4/C〕 pyruvate, and (3)internal amino acid sequence analysis of tryptic digested enzyme.

  • PDF

Protective Effect of Physostigmine and Neostigmine against Acute Toxicity of Parathion in Rats

  • Jun, Jung-Won;Kim, Young-Chul
    • Archives of Pharmacal Research
    • /
    • 제14권4호
    • /
    • pp.330-335
    • /
    • 1991
  • The effects of physostigmine and neostigmine on the parathin induced toxicity were examined in adult female rats. Physostigmine $(100\;{\mu}g/kg,\;ip)$ or neostigmine $(200\;{\mu}g/kg,\;ip)$ inhibited acetylcholinesterase (AChE) and cholinesterase (ChE) activities in blood, brain and lung when the enzyme activity was measured 30 min after the treatment. At the doses of two carbamates equipotent on brain AChE, neostigmine showed greater inhibition on peripheral AChE/ChE. The enzyme activity returned to normal in 120 min following the carbamates except in the lung of rats treated with neostigmine. Carbamates administered 30 min prior to parathion (2 mg/kg) antagonized the inhibition of AChE/ChE by parathion when the enzyme activity was measured 2 hr following parathion. Neostigmine showed greater protective effect on peripheral AChE/ChE. The effect of either carbamate on AChE/ChE was not significant 2 hr beyond the parathion treatment. Carbamates decreased the mortality of rats challenged with a lethal dose of parathion (4 mg/kg, ip) either when treated alone or in combination with atropine (10 mg/kg, ip). Lethal action of paraoxon (1.5 mg/ks ip), the active metabolite of parathion was also decreased by the carbamate treatment indicating that the protection was not mediated by competitive inhibition of metabolic conversion of parathion to paraoxon. The results suggest that carbamylation of the active sites may not be the sole underlying mechanism of protection provided by the carbamates.

  • PDF

Minor Thermostable Alkaline Protease Produced by Thermoactinomyces sp. E79

  • Kim, Young-Ok;Lee, Jung-Kee;Sunitha, Kandula;Kim, Hyung-Kwoun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.469-474
    • /
    • 1999
  • Thermoactinomyces sp. E79 produced two types of thermostable alkaline proteases extracellularly. A minor protease was separated from a major protease by using DEAE-column chromatography. This enzyme was purified to homogeneity by ammonium sulfate and DEAE-Sepharose ion-exchange chromatography. The purified minor protease showed different biochemical properties compared to the major protease. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 36 kDa. Its optimum temperature and pH for proteolytic activity against Hammarsten casein were $70^{\circ}C$ and 9.0, respectively. The enzyme was stable up to$75^{\circ}C$ and in an alkaline pH range of 9.0-11.0. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF) and $Hg^{2+}, indicating that the enzyme may be a cysteine-dependent serine protease. In addition, the enzyme cleaved the endoproteinase substrate, succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, and the $K_m$ value for the substrate was 1.2 mM.

  • PDF

Cloning of Fibrinolytic Enzyme Gene from Bacillus subtilis Isolated from Cheonggukjang and Its Expression in Protease-deficient Bacillus subtilis Strains

  • Jeong, Seon-Ju;Kwon, Gun-Hee;Chun, Ji-Yeon;Kim, Jong-Sang;Park, Cheon-Seok;Kwon, Dae-Young;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1018-1023
    • /
    • 2007
  • Bacillus subtilis CH3-5 was isolated from cheonggukjang prepared according to traditional methods. CH3-5 secreted at least four different fibrinolytic proteases (63, 47, 29, and 20 kDa) into the culture medium. A fibrinolytic enzyme gene, aprE2, encoding a 29kDa enzyme was cloned from the genomic DNA of CH3-5, and the DNA sequence determined. aprE2 was overexpressed in heterologous B. subtilis strains deficient in extracellular proteases using a E. coli-Bacillus shuttle vector. A 29 kDa AprE2 band was observed and AprE2 seemed to exhibit higher activities towards fibrin rather than casein.

Association between C16orf47 Gene and Serum Liver Enzyme Levels in the Korean Population

  • Ahn, Hyo-Jun;Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제19권3호
    • /
    • pp.239-244
    • /
    • 2013
  • Serum liver enzyme levels are widely used in the clinical diagnosis of liver diseases and the assessment of liver status. They also have epidemiological significance to be prospective risk factors for type 2 diabetes, cardiovascular disease. In the previous study, single nucleotide polymorphisms (SNPs) in several genes have been reported to be associated with serum liver enzyme levels in American population. We aimed to confirm whether the genetic variation of C16orf47 (chromosome 16 open reading frame 47) gene also influence the serum liver enzyme levels in Korean population. We genotyped variants in or near C16orf47 in a population-based sample including 994 unrelated Korean adult. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in C16orf47 gene with serum liver enzyme levels. By examining genotype data of a total of 944 subjects in 5 hospital health promotion center, we discovered the C16orf47 gene polymorphisms are associated with serum liver enzyme levels. The common and highest significant polymorphism was rs7203412 (${\beta}$=3.68, P=3.66E-06) with glutamic oxaloacetic transferase (GOT) and rs7203412 (${\beta}$=6.2, P=7.06E-05) with glutamic pyruvate transaminase (GPT) in all group. Furthermore, the SNP rs7203412 was consistently associated with GOT (${\beta}$=6.41, P=6.78E-08) and GPT (${\beta}$=11.53, P=2.81E-06) in men group. Consequently, we found statistically significant SNP in C16orf47 gene that are associated with serum levels of GOT and GPT. In addition, these results suggest that the individuals with the minor alleles of the SNP in the C16orf47 gene may be more elevated serum liver enzyme levels in the Korean population.