분석의 역설을 처음으로 명확하게 자각하고, 이를 회피할 방안을 제시한 사람은 무어(G. E. Moore)이다. 여기서는 이 역설의 해결책을 무어식의반-언어적 노선과 이에서 벗어나 있는 노선으로 나누어 제시한다. 후자에는 개념의 특징 및 종류, 명제의 구조, 비동등성 관계에 주목해서 역설을 회피하려는 전략이 있다. 본 논문의 일차적인 목적은 주요 역설해결책을 기술하고 그 분류를 제시하는 것이지만, 이와 더불어 또한 각 해결 전략의 한계를 논하도록 하겠다. 그런데 이런 논의를 효율적으로 전개하려면, 먼저 무어의 분석이론을 재구성하는 일이 필요하다. 무어의 분석이론은, 단지 역사적인 중요성뿐 아니라, 고전적 분석의 전형을 이룬다는 점에서도 관심의 대상이 되기에 충분하다. 또한 분석의 역설이 고전적 분석과 같이 특정 유형의 분석에만 해당한다는 주장에 반대하여 넓은 범위의 분석에서 발생한다고 주장하겠다. 그러나 더불어 이런 상황이 분석의 무용성을 보여주는 것은 아니라고 주장하겠다.
미국수학사에서 가장 중요한 시기로 여겨지는 1890년에서 1950년 사이의 미국수학계의 발전과정을 당시의 미국수학 연구에 있어서 혁신적 발전의 계기를 제공한 시카고 대학의 초대 수학과장 E.H. Moore 의 역할을 중심으로 고찰한다. 19세기말 아직 낙후되었던 미국 수학계는 시카고 대학의 핵심 학과였던 수학과는 총장의 비전을 같이 할 우수교수를 확보하고, 새로운 제도 하에서 선발된 우수 대학원 학생들을 탐구지향 교수법으로 지도하며 미국 수학연구의 초장기에 우수한 인재를 공급하기 시작한다. 이를 통하여 미국은 인재양성과 새로운 연구 분야 및 연구방법의 개척에 성공하고, 1950년 국제수학자대회(ICM)를 미국에서 개최하며, 당당히 세계수학의 주류에 진입한다. 본 원고는 위의 발전과정이 현재 한국에 주는 의미를 분석한다.
미국 수학계는 하버드대학이 근대수학 교과과정을 도입 한 후 280여년(1640년)이 지나고, 미국수학회(AMS; American Mathematical Society) 창립 후 30년(1890년 뉴욕수학회, 1894년 미국수학회)이 지난 1920년대에도 아직 열악한 연구 여건을 가지고 있었다. 본 연구에서는 미국수학계에 국가연구위원회(National Research Council, NRC)를 통하여 수학분야에 최초로 박사후연구원을 지원하는 제도를 만들고, 기금을 조성하여 프린스턴대학에 당시 세계 최고수준의 수학과 건물인 파인 홀(Fine Hall)을 건축했으며, 1932년 새로 생긴 프린스턴 고등연구소(IAS)에 A. 아인스타인(Einstein), 폰 노이만(von Neumann)등을 초빙하고, Math Review 창간에 결정적인 기여를 하며 미국에서도 수학자가 순수수학 연구의 경쟁력을 확보할 수 있다는 것을 보여준 미국 초창기 수학자 O. 베블런(Osward Veblen)에 대하여 분석한다. 20세기 초반 대부분의 시간을 식민지 상태에서 보낸 한국은 20세기 후반에 회원들의 적극적인 학술활동에 힘입어 2008년 현재 국제수학연맹(IMU)의 5그룹(투표 수를 뜻함) 중에 4 그룹에 속하게 되었다. 더구나 2014년 국제수학자대회(ICM)를 서울에서 유치하게 되었다. 한국이 21세기를 한국 수학의 빠른 발전기로 만들 가능성은 어디에서 찾을 수 있을까? 이에 대한 긍정적인 답을 수학 후진국이었던 미국이 1876년 J. 실베스터를 초빙하여 연구 수준의 수학교육을 최초로 시작한 후 궁극적으로 시카고대학의 E. H. 무어(Moore)가 미국수학회장으로 리더쉽을 발휘한 1900년부터 단 100여년 만에 세계 수학 정상에 자리한 미국수학과 미국수학회의 예를 검증하여 찾아보고자 한다. E. H. 무어가 배출한 인재와 제시한 비전은 E. H. 무어의 제자, L. E. 딕슨(Dickson), O. 베블런, R. L. 무어와 G. D. 버코프(Birkhoff)를 통하여 미국에 구현되었다. 그 중 O. 베블런은 'Princeton algebraic topology' 그룹을 리드하며 미국수학 전반에 세계적인 연구여건을 조성한 탁월한 행정능력가 이었다. G. D. 버코프의 역할은 수학에 대한 학술적 기여의 비중이 컸다. 이들은 20세기 중반 미국이 세계 수학연구의 주류에 진입하는데 크게 기여하였다([9],[10],[21]). 수학자 베블런은 당대 미국 최고수준의 학술적 경지에 도달하였고 1923년 미국수학회장을 역임하였으며 자신이 미국수학계에 제시한 비전과 통찰력을 실제로 구현한 수학자, 리더, 그리고 창조적인 행정가였다. 본 논문은 수학자 베블런이 미국수학계에 끼친 전반적인 영향을 연구하고, 이를 통하여 미국 수학에 실질적인 경쟁력을 부여하며 미국을 세계 수학의 주류에 진입시킨 초창기 미국 수학계 리더의 역할에 대하여 생각해 본다. 본 연구는 근대수학 교과과정 도입 110여년, 2007년 대한수학회 창립 60년을 맞으며 최근 20년간 커다란 발전을 이루어 양적인 면에서는 2007년 세계 12위로 평가된 한국의 다음 단계로의 발전에 대한 논지를 제공하고, 실제로 한국이 세계 수학의 주류로 진입하는데 필요한 구체적인 할 일(Action plan)이 무엇인지를 보여준다. 이는 빠른 변화가 진행되고 있는 국내 과학기술계의 흐름에서 수동적인 추종이 아니라 수학계 스스로 연구-교육-봉사에 균형 잡힌 비전을 제시하고 추구하는 긍정적인 모델을 제시한다.
최근 그래핀, hexagonal boron nitride (h-BN) 및 $MoS_2$ (molybdenum disulfide)와 같은 2차원 결정 물질들은 무어의 법칙(Moore's Law)를 뛰어넘어 계속적인 소자의 소형화를 가능케 하고 또한 대면적, 저비용 소자 개발을 가능케 하는 우수한 특성을 가진 차세대 반도체 트랜지스터 소재로 각광받고 있다. $MoS_2$는 bulk 상태일 때는 1.2 eV의 indirect 밴드갭을 가지지만 단층형태일 때는 1.8 eV의 direct 밴드갭을 가지며 dielectric screening 기법등을 통해 mobility를 향상시킬 수 있는 것으로 연구된 바 있다. 본 연구에서는 화학기상증착 (chemical vapor deposition)법을 이용하여 $MoS_2$ 박막을 형성하기 위한 기초연구인 Mo 전구체의 특성평가 및 적합한 공정조건 개발 연구를 수행하였다. 사용한 전구체는 $Mo(CO)_6$ (Molybdenum hexacarbonyl)이고, 온도 및 압력, 반응기체(H2 S, Hydrogen sulfide) 유량 등의 공정 조건 변화에 따른 거동을 Fourier transform infrared spectroscopy (FT-IR) 시스템을 사용하여 측정하였다. 또한 $Mo(CO)_6$의 분자구조를 상용 프로그램인 Gaussian으로 시뮬레이션 하여 실제 FT-IR 측정 결과값과 비교 분석하였다.
최근 그래핀, hexagonal boron nitride (h-BN) 및 $MoS_2$ (molybdenum disulfide)와 같은 2차원 결정 물질들은 무어의 법칙 (Moore's Law)를 뛰어넘어 계속적인 소자의 소형화를 가능케 하고 또한 대면적, 저비용 소자 개발을 가능케 하는 우수한 특성을 가진 차세대 반도체 트랜지스터 소재로 각광받고 있다. $MoS_2$는 bulk 상태일 때는 1.2 eV의 indirect 밴드갭을 가지지만 단층형태일 때는 1.8 eV의 direct 밴드갭을 가지며 dielectric screening 기법 등을 통해 mobility를 향상시킬 수 있는 것으로 연구된 바 있다. 본 연구에서는 화학기상증착(chemical vapor deposition, CVD)법을 이용하여 $MoS_2$박막을 형성하기 위한 기초연구인 Mo전구체의 특성 평가 및 적합한 공정조건 개발 연구를 수행하였다. 사용한 전구체는 $Mo(CO)^6$ (Molybdenum hexacarbonyl)이고, 온도 및 압력, 반응기체($H_2S$, Hydrogen sulfide) 유량 등의 공정 조건 변화에 따른 거동을 Fourier transform infrared spectroscopy (FT-IR) 시스템을 사용하여 측정하였다. 또한 $Mo(CO)^6$의 분자구조를 상용 프로그램인 Gaussian으로 시뮬레이션 하여 실제 FT-IR 측정 결과값과 비교 분석하였다. 화학기상증착법을 이용한 $MoS_2$ 증착조건 최적화를 위하여 다양한 온도, 유량, 압력, 및 기판 종류에 대하여 증착 실험을 수행하였으며, 증착된 샘플은 scanning electron microscope (SEM), Raman spectroscopy를 이용하여 분석하였다.
미국 버지니아대학 수학과 교수, 보험회사 계리인, 변호사를 거쳐, 영국 육군사관학교 교관으로 55세에 정년을 한 유태계 영국 수학자 J. J. 실베스터는 61세의 나이로 1876년 미국 최초의 연구중심대학인 존스홉킨스대학에 초대 수학과장으로 초빙되어 연구 인력을 배출하고 미국 최초의 수학연구저널을 발간하며 미국에 현대수학의 연구 여건을 마련 해 준다. 본 논문은 그와 그가 후임으로 추천한 F. 클라인이 19세기 후반 미국수학계에 끼친 역할을 분석한다. 우리는 실베스터와 클라인과 미국인 수학자 E. H. 무어가 100여년 전 낙후된 미국 수학을 당시 유럽 중심의 수학계 주류에 진입시키는 과정에서의 역할과 이 과정이 한국에서 갖는 의미를 생각한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.