• Title/Summary/Keyword: E. faecalis

Search Result 226, Processing Time 0.03 seconds

Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus

  • Alshalif, Abdullah Faisal;Juki, Mohd Irwan;Othman, Norzila;Al-Gheethi, Adel Ali;Khalid, Faisal Sheikh
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.630-637
    • /
    • 2019
  • The present study aimed to investigate the potential of Enterococcus faecalis (E. faecalis) and Bacillus cereus (B. cereus) in improving the properties of bio-concrete. E. faecalis and B. cereus strains were obtained from fresh urine and an acid mire water at cell concentration of 1.16×1012 and 1.3×1012 cells mL-1, respectively. The bacterial strains were inoculated in a liquid medium into the concrete with 1, 3 and 5% as replacement of water cement ratio (w/c). The ability of E. faecalis and B. cereus cells to accumulate the calcite and the decrement of pores size within bio-concrete was confirmed by SEM and EDX analysis. The results revealed that E. faecalis exhibited high efficiency for increasing of compressive and splitting tensile strength than B. cereus (23 vs. 14.2%, and 13 vs. 8.5%, respectively). These findings indicated that E. faecalis is more applicable in the bio-concrete due to its ability to enhance strength development and reduce water penetration.

Antibacterial effect of urushiol on E. faecalis as a root canal irrigant

  • Kim, Sang-Wan;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • Objectives: The purpose of this study was to compare the antibacterial activity of urushiol against Enterococcus faecalis (E. faecalis) to that of NaOCl. Materials and Methods: The canals of thirty two single rooted human teeth were instrumented with Ni-Ti files (ProTaper Next X1, X2, X3, Dentsply). A pure culture of E. faecalis ATCC 19433 was prepared in sterile brain heart infusion (BHI) broth. The teeth were submerged in the suspension of E. faecalis and were incubated at $37^{\circ}C$ for 7 days to allow biofilm formation. The teeth were randomly divided into three experimental groups according to the irrigant used, and a negative control group where no irrigant was used (n = 8). Group 1 used physiologic normal saline, group 2 used 6% NaOCl, and group 3 used 10 wt% urushiol solution. After canal irrigation, each sample was collected by the sequential placement of 2 sterile paper points (ProTaper NEXT paper points, size X3, Dentsply). Ten-fold serial dilutions on each vials, and 100 µL were cultured on a BHI agar plate for 8 hours, and colony forming unit (CFU) analysis was done. The data were statistically analyzed using Kruskal-Wallis and Mann-whitney U tests. Results: Saline group exhibited no difference in the CFU counts with control group, while NaOCl and urushiol groups showed significantly less CFU counts than saline and control groups (p < 0.05). Conclusions: The result of this study suggests 10% urushiol and 6% NaOCl solution had powerful antibacterial activity against E. faecalis when they were used as root canal irrigants.

The Reason of High Prevalence of Vancomycin-Resistant (VR) E. faecium in Nosocomial Infection

  • Jo, Hyun-Jung;Kim, Hee-Jeong;Lee, Hyo-Jin;Park, Gyu-Nam;Kim, Min-Ju;An, Dong-Jun;Chang, Kyung-Soo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.83-85
    • /
    • 2012
  • Vancomycin-resistant (VR)-E. faecium and VR-E. faecalis were isolated simultaneously from a rectal swab of a patient diagnosed with pneumonia in an intensive care unit (ICU). The patient was treated with various antibiotics including vancomycin. Only VR-E. faecium was continually isolated from the rectal swab at one and two weeks of the treatment. Identical vanA, IS1216V, and IS1542 genes were detected in both VR-E. faecium and VR-E. faecalis isolates which showed equal resistance against vancomycin and teicoplanin, but IS1251 was not detected. VR-E. faecium showed stronger multi-drug resistance than VE-E. faecalis. This result supports the reason why VR-E. faecium is one of the major pathogens in nosocomial infections.

The effect of using nanoparticles in bioactive glass on its antimicrobial properties

  • Maram Farouk Obeid;Kareim Moustafa El-Batouty;Mohammed Aslam
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.58.1-58.8
    • /
    • 2021
  • Objectives: This study addresses the effect of using nanoparticles (np) on the antimicrobial properties of bioactive glass (BAG) when used in intracanal medicaments against Enterococcus faecalis (E. faecalis) biofilms. Materials and Methods: E. faecalis biofilms, grown inside 90 root canals for 21 days, were randomly divided into 4 groups according to the antimicrobial regimen followed (n = 20; BAG-np, BAG, calcium hydroxide [CaOH], and saline). After 1 week, residual live bacteria were quantified in terms of colony-forming units (CFU), while dead bacteria were assessed with a confocal laser scanning microscope. Results: Although there was a statistically significant decrease in the mean CFU value among all groups, the nano-group performed the best. The highest percentage of dead bacteria was detected in the BAG-np group, with a significant difference from the BAG group. Conclusions: The reduction of particle size and use of a nano-form of BAG improved the antimicrobial properties of the intracanal treatment of E. faecalis biofilms

Antimicrobial Effect of Ethanol Extract of Garcinia mangostana L. against Enterococcus faecalis Isolated from Human Oral Cavity

  • Park, Tae-Young;Lim, Yun Kyong;Lee, Dae Sung;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.129-132
    • /
    • 2018
  • Enterococcus faecalis is a major causative agent of endodontic treatment failure. The purpose of this study was to investigate bactericidal effects of ethanol extract of Garcinia mangostana L. (mangosteen extract) on five strains of E. faecalis that were isolated from human oral cavities. The bactericidal effects of mangosteen extract were assessed by measurement of minimum bactericidal concentration (MBC) value. The cytotoxicity of mangosteen extract on immortalized human gingival fibroblasts, hTERT-hNOF, was determined based on cell counting method. The data revealed the MBC value of mangosteen extract against the E. faecalis strains was $4{\mu}g/ml$. Additionally, the cell viability of mangosteen extract on hTERT-hNOF was 83.7-89.1% at the 1 to $16{\mu}g/ml$. These findings indicated that mangosteen extract could be used as a root canal cleaner during management of endodontic treatment failure caused by E. faecalis.

Anti-Inflammatory Effects of Fermented Milk Supplemented with Heat-Killed Enterococcus faecalis EF-2001 Probiotics (Enterococcus faecalis EF-2001 유산균 사균체 첨가 발효유의 항염증 효과)

  • Kang, Hyo-Jin;Kim, Tae-Woon;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.112-120
    • /
    • 2020
  • This study was conducted to verify the physiological activity of heat-killed Enterococcus faecalis EF-2001 probiotics in fermented milk. The anti-inflammatory effects of fermented milk supplemented with different concentrations (0, 100, and 500 ㎍/mL) of E. faecalis EF-2001 were determined using MTT assay and nitric oxide inhibition assay. The MTT assay was performed using RAW 264.7 cells. Results revealed that the rates of cytotoxicity and cell survival decreased significantly with increase in the concentration of heat-killed probiotics (p<0.05). Moreover, fermented milk supplemented with 100 ㎍/mL EF-2001 (EFM1) and the fermented milk supplemented with 500 ㎍/mL EF-2001 (EFM2) exhibited higher nitric oxide inhibition than normal fermented milk (NFM). Additionally, EFM2 significantly reduced the ratio of prostaglandin E2 compared to NFM (p<0.05). In conclusion, the treatment sample showed higher anti-inflammatory activity than NFM. The findings of this study could be used as a basic guideline for manufacturing of NFM supplemented with heat-killed probiotics.

Anti-Hemolytic and Antimicrobial Effects against Multidrug-Resistant Bacteria of Enterococcus faecalis Isolated from Human Breast Milk (모유에서 분리한 Enterococcus faecalis의 다제내성 균에 대한 항용혈 및 항균 효과)

  • Yi, Eun-Ji;Lee, Jeong-eun;Jo, So-Yeon;Kim, Soo-bin;Yu, Du-na;Kook, Moochang;Kim, Ae Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, the hemolysis of Enterococcus faecalis BMSE-HMP strains, isolated from human breast milk, was investigated, and the anti-hemolytic and antimicrobial effects on multidrug-resistant (MDR) bacteria were investigated. The enzyme activity of E. faecalis BMSE-HMP 4 strains was measured, and it was found that the activities of esterase and esterase lipase were the highest. In addition, no hemolytic reaction was observed in any of the isolates. Subsequently, the anti-hemolytic activity against MDR strains causing hemolysis was evaluated. E. faecalis BMSE-HMP002 had the highest anti-hemolytic activity against Staphylococcus aureus CCARM 3855 at 75.71 ± 10.00%. The anti-hemolytic activity against Escherichia coli DC 2 CCARM 0238 and Pseudomonas aeruginosa CCARM 0223 showed that the activity of BMSE-HMP001 was highest at 76.92 ± 2.99% and 87.93 ± 1.93%, respectively. Examination of the antimicrobial effects against the MDR bacteria Staphylococcus spp., Escherichia spp., Pseudomonas spp., Salmonella spp., Klebsiella spp., Enterobacter spp., and E. faecalis BMSE-HMP strains showed antimicrobial effects against both gram-positive and gram-negative strains. Breastfeeding delivers enterococci into the intestinal tract of newborns by lactation, and its usefulness is attracting attention as it has been reported that enterococci have a potential effect on neonatal immune development. In this study, the hemolytic and antimicrobial effects of E. faecalis BMSE-HMP strains on MDR bacteria were investigated, to confirm their potential as useful lactic acid bacteria. Additional studies on the antibiotic resistance and toxicity of the E. faecalis BMSE-HMP strains, isolated in this study, are necessary to prove it safe for use.

Genetic Diversity and Antibiotic Resistance of Enterococcus faecalis Isolates from Traditional Korean Fermented Soybean Foods

  • Lee, Jong-Hoon;Shin, Donghun;Lee, Bitnara;Lee, Hyundong;Lee, Inhyung;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.916-924
    • /
    • 2017
  • Eighty-five Enterococcus faecalis isolates collected from animals (40 isolates), meju (a Korean fermented soybean product; 27 isolates), humans (10 isolates), and various environmental samples (8 isolates) were subjected to multilocus sequence typing (MLST) to identify genetic differences between samples of different origins. MLST analysis resulted in 44 sequence types (STs), and the eBURST algorithm clustered the STs into 21 clonal complexes (CCs) and 17 singletons. The predominant STs, ST695 (21.1%, 18/85) and ST694 (9.4%, 8/85), were singletons, and only contained isolates originating from meju. None of the STs in the current study belonged to CC2 or CC9, which comprise clinical isolates with high levels of antibiotic resistance. The E. faecalis isolates showed the highest rates of resistance to tetracycline (32.9%), followed by erythromycin (9.4%) and vancomycin (2.4%). All isolates from meju were sensitive to these three antibiotics. Hence, MLST uncovered genetic diversity within E. faecalis, and clustering of the STs using eBURST revealed a correlation between the genotypes and origins of the isolates.

Synergistic Antibacterial Activity of Ecklonia cava Extract against Anti-biotic Resistant Enterococcus faecalis (항생제 내성 Enterococcus faecalis에 대한 감태(Ecklonia cava) 추출물의 항균 시너지 효과)

  • Kim, Seung-Yong;Kim, Young-Mog;Kim, Eunjung;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • With continuing demand for the development of new, effective and safe therapies, an investigation was carried out to test the efficacy of an antibacterial agent derived from marine edible seaweed. The methanolic extract of Ecklonia cava from marine edible seaweed evinced potential antibacterial activity against Enterococcus faecalis. Among five solvent-soluble fractions of E. cava methanolic extract, the ethyl acetate soluble extract (EtOAc) exhibited the strongest antibacterial activity, with a MIC value of $128{\mu}g/mL $ against E. faecalis strains. Furthermore, a synergistic antibacterial effect between an antibiotic and the EtOAc fraction was assessed using fractional inhibitory concentration (FIC) indices. A combination of ciprofloxacin and the EtOAc fraction resulted in a ${\sum}FIC_{min}$ range of 0.188 and ${\sum}FIC_{max}$ of 0.508 to 563, suggesting that the ciprofloxacin-EtOAc fraction of E. cava combination resulted in an antibacterial synergy effect against E. faecalis.

Isolation, Identification, and Characterization of Ornithine-Producing Enterococcus faecalis OA18 from Kefir Grain (케피어그레인으로 제조한 요쿠르트로부터 Enterococcus faecalis OA18 균주의 분리 및 특성규명)

  • Yu, Jin-Ju;Kim, Su-Gon;Seo, Kyoung-Won;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • Lactic acid bacteria (LAB) OA18 was isolated from yogurt prepared by using Kefir Grain as a starter. The OA18 strain was a Gram-positive, cocci-type bacterium, and able to grow anaerobically with $CO_2$ production. The OA18 strain grew well on MRS broth supplemented with 50 mM arginine at $30-37^{\circ}C$ and pH of 7.0-9.0. The optimum temperature and pH for growth are $37^{\circ}C$ and pH 7.0. The isolate fermented ribose, D-glucose, cellobiose, D-trehalose, but not L-xylose, D-melibiose, and inositol. The 16S rRNA gene sequence of the isolate showed 99.8% homology with the Enterococcus faecalis 16S rRNA gene (Access no. AB012212). Based on the biochemical characteristics and 16S rRNA gene sequence analysis data, it was identified and named as E. faecalis OA18. The E. faecalis OA18 strain showed a high ornithine-producing capacity in the presence of arginine and also showed an antimicrobial activity against Streptomyces strains such as Streptomyces coelicolor subsp. Flavus, S. coeruleorubidus, S. coeruleoaurantiacus, S. coelicolor, S. coeruleoprunus. The cell growth of E. faecalis OA18 strain was maintained in MRS broth with a NaCl concentration of 0-7%.