Browse > Article
http://dx.doi.org/10.4014/jmb.1612.12033

Genetic Diversity and Antibiotic Resistance of Enterococcus faecalis Isolates from Traditional Korean Fermented Soybean Foods  

Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
Shin, Donghun (Department of Food Science and Biotechnology, Kyonggi University)
Lee, Bitnara (Department of Food Science and Biotechnology, Kyonggi University)
Lee, Hyundong (Department of Food Science and Biotechnology, Kyonggi University)
Lee, Inhyung (Department of Bio and Fermentation Convergence Technology, Kookmin University)
Jeong, Do-Won (Department of Food and Nutrition, Dongduk Women's University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.5, 2017 , pp. 916-924 More about this Journal
Abstract
Eighty-five Enterococcus faecalis isolates collected from animals (40 isolates), meju (a Korean fermented soybean product; 27 isolates), humans (10 isolates), and various environmental samples (8 isolates) were subjected to multilocus sequence typing (MLST) to identify genetic differences between samples of different origins. MLST analysis resulted in 44 sequence types (STs), and the eBURST algorithm clustered the STs into 21 clonal complexes (CCs) and 17 singletons. The predominant STs, ST695 (21.1%, 18/85) and ST694 (9.4%, 8/85), were singletons, and only contained isolates originating from meju. None of the STs in the current study belonged to CC2 or CC9, which comprise clinical isolates with high levels of antibiotic resistance. The E. faecalis isolates showed the highest rates of resistance to tetracycline (32.9%), followed by erythromycin (9.4%) and vancomycin (2.4%). All isolates from meju were sensitive to these three antibiotics. Hence, MLST uncovered genetic diversity within E. faecalis, and clustering of the STs using eBURST revealed a correlation between the genotypes and origins of the isolates.
Keywords
Enterococcus faecalis; multilocus sequence typing; meju; antibiotic resistance; diversity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Solheim M, Brekke MC, Snipen LG, Willems RJ, Nes IF, Brede DA. 2011. Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol. 11: 3.   DOI
2 Jamet E, Akary E, Poisson MA, Chamba JF, Bertrand X, Serror P. 2012. Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol. 31: 191-198.   DOI
3 Arias CA, Murray BE. 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10: 266-278.   DOI
4 Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C, et al. 2006. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospitaladapted genetic complexes in a background of high rates of recombination. J. Clin. Microbiol. 44: 2220-2228.   DOI
5 Kuhn I, Burman LG, Haeggman S, Tullus K, Murray BE. 1995. Biochemical fingerprinting compared with ribotyping and pulsed-field gel electrophoresis of DNA for epidemiological typing of enterococci. J. Clin. Microbiol. 33: 2812-2817.
6 Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186: 1518-1530.   DOI
7 Urwin R, Maiden MC. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11: 479-487.   DOI
8 Chung YS, Kwon KH, Shin S, Kim JH, Park YH, Yoon JW. 2014. Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea. J. Microbiol. Biotechnol. 24: 386-393.   DOI
9 Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S. 2014. MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics 30: 1305-1307.   DOI
10 Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426.
11 Clinical and Laboratory Standards Institute. 2007. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement. CLSI domument M100-S17. CLSI, Wayne, PA. USA.
12 Guerrero-Ramos E, Cordero J, Molina-Gonzalez D, Poeta P, Igrejas G, Alonso-Calleja C, et al. 2016. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol. 53: 156-164.   DOI
13 Adams MR. 1999. Safety of industrial lactic acid bacteria. J. Biotechnol. 68: 171-178.   DOI
14 Santos MM, Piccirillo C, Castro PM, Kalogerakis N, Pintado ME. 2012. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol. 28: 2435- 2440.   DOI
15 Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L. 2006. The role and application of enterococci in food and health. Int. J. Food Microbiol. 106: 1-24.   DOI
16 Franz CM, van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31: 293-310.   DOI
17 Patel G, Snydman DR, Practice ASTIDCo. 2013. Vancomycinresistant Enterococcus infections in solid organ transplantation. Am. J. Transplant. 13 Suppl 4: 59-67.   DOI
18 Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al. 2008. NHSN annual update: antimicrobialresistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect. Control Hosp. Epidemiol. 29: 996-1011.   DOI
19 DiazGranados CA, Zimmer SM, Klein M, Jernigan JA. 2005. Comparison of mortality associated with vancomycinresistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin. Infect. Dis. 41: 327-333.   DOI
20 Perez-Pulido R, Abriouel H, Ben Omar N, Lucas R, Martinez-Canamero M, Galvez A. 2006. Safety and potential risks of enterococci isolated from traditional fermented capers. Food Chem. Toxicol. 44: 2070-2077.   DOI
21 Lopez M, Rezusta A, Seral C, Aspiroz C, Marne C, Aldea MJ, et al. 2012. Detection and characterization of a ST6 clone of vanB2-Enterococcus faecalis from three different hospitals in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 31: 257-260.   DOI
22 Maasjost J, Muhldorfer K, de Jackel SC, Hafez HM. 2015. Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian Dis. 59: 143-148.   DOI
23 Furlaneto-Maia L, Rocha KR, Siqueira VL, Furlaneto MC. 2014. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Rev. Instit. Med. Trop. Sao Paulo 56: 97-103.   DOI
24 Quinones D, Kobayashi N, Nagashima S. 2009. Molecular epidemiologic analysis of Enterococcus faecalis isolates in Cuba by multilocus sequence typing. Microb. Drug Resist. 15: 287-293.   DOI
25 Poulsen LL, Bisgaard M, Son NT, Trung NV, An HM, Dalsgaard A. 2012. Enterococcus faecalis clones in poultry and in humans with urinary tract infections, Vietnam. Emerg. Infect. Dis. 18: 1096-1100.   DOI
26 Ruiz-Garbajosa P, Canton R, Pintado V, Coque TM, Willems R, Baquero F, et al. 2006. Genetic and phenotypic differences among Enterococcus faecalis clones from intestinal colonisation and invasive disease. Clin. Microbiol. Infect. 12: 1193-1198.   DOI
27 Leavis HL, Bonten MJ, Willems RJ. 2006. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr. Opin. Microbiol. 9: 454-460.   DOI
28 Rathnayake IU, Hargreaves M, Huygens F. 2011. Genotyping of Enterococcus faecalis and Enterococcus faecium isolates by use of a set of eight single nucleotide polymorphisms. J. Clin. Microbiol. 49: 367-372.   DOI
29 Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24: 648-660.   DOI
30 Kara A, Devrim I, Bayram N, Katipoglu N, Kiran E, Oruc Y, et al. 2015. Risk of vancomycin-resistant enterococci bloodstream infection among patients colonized with vancomycin-resistant enterococci. Braz. J. Infect. Dis. 19: 58-61.   DOI
31 Nallapareddy SR, Wenxiang H, Weinstock GM, Murray BE. 2005. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J. Bacteriol. 187: 5709-5718.   DOI
32 Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, et al. 2011. Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J. Clin. Microbiol. 49: 925-931.   DOI
33 Kawalec M, Pietras Z, Danilowicz E, Jakubczak A, Gniadkowski M, Hryniewicz W, et al. 2007. Clonal structure of Enterococcus faecalis isolated from Polish hospitals: characterization of epidemic clones. J. Clin. Microbiol. 45: 147-153.   DOI
34 Kuch A, Willems RJ, Werner G, Coque TM, Hammerum AM, Sundsfjord A, et al. 2012. Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J. Antimicrob. Chemother. 67: 551-558.   DOI
35 McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 2007. Genetic diversity among Enterococcus faecalis. PLoS One 2: e582.   DOI
36 Campanile F, Bartoloni A, Bartalesi F, Borbone S, Mangani V, Mantella A, et al. 2003. Molecular alterations of VanA element in vancomycin-resistant enterococci isolated during a survey of colonized patients in an Italian intensive care unit. Microb. Drug Resist. 9: 191-199.   DOI