The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.