• Title/Summary/Keyword: E. coliO157:H7

Search Result 388, Processing Time 0.034 seconds

Improved Detection of Viable Escherichia coli O157:H7 in Milk by Using Reverse Transcriptase-PCR

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A sensitive reverse transcriptase-PCR (RT-PCR) method to detect viable Escherichia coli O157:H7 in milk was established. The primer sets were designed based on the nucleotide sequences of the rfbE (per) and wbdN genes in the O157 antigen gene cluster of E. coli O157:H7. RT-PCR using five different primer sets yielded DNA with sizes of 655, 518, 450, and 149-bp, respectively. All five of the E. coli O157:H7 strains were detected by RT-PCR, but 11 other bacterial species were not. The sensitivity of RT-PCR was improved by adding yeast tRNA as a carrier to the crude RNA extract. The RT-PCR amplifying the 149-bp DNA fragment was the most sensitive for detecting E. coli O157:H7 and the most refractory to the bactericidal treatments. Heat treatment at $65^{\circ}C$ for 30 min was the least inhibitory of all bactericidal treatments. Treatment with RNase A strongly inhibited the RT-PCR of heated milk but not unheated milk. This study described RT-PCR methods that are specific and sensitive with a detection limit of 10 E. coli O157:H7 cells, and showed that pre-treating milk samples with RNase A improved the specificity to detect viable bacteria by RT-PCR.

Effects of Egg Yolk Antibodies Produced in Response to Different Antigenic Fractions of E. coli O157:H7 on E. coli Suppression

  • Chae, H.S.;Singh, N.K.;Ahn, C.N.;Yoo, Y.M.;Jeong, S.G.;Ham, J.S.;Kim, D.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1665-1670
    • /
    • 2006
  • The objective of this research was to provide the characterization and method for producing anti-E. coli O157:H7 antibodies in egg-laying hens and to determine if the antibody can restrain the proliferation of E. coli O157:H7 in-vitro. Selected antigenic fractions (whole cell, outer membrane protein and lipopolysaccharide (LPS)) from E. coli O157:H7 were injected to hens in order to produce anti-E. coli O157:H7 antibodies. The immune response and the egg yolk antibodies of laying hens against the whole cell, outer membrane protein and LPS antigens were monitored by ELISA. The level of antibodies against whole cell antigen monitored through ELISA sharply increased after the initial immunization, and it was found to be maximum on day 49 however, the level was maintained up to day 70. Antibodies (5 mg/ml) directed against the whole cell inhibited E. coli proliferation 10-13 times more than outer membrane protein or LPS. The antibody response against the whole cell antigens appeared to have higher activity in restraining the proliferation of E. coli O157:H7 than antibody against outer membrane protein or LPS. Results reflected that increasing the IgY's in the egg yolk could prevent greater economic losses due to human and animal health from pathogenic bacteria i.e. E. coli O157:H7.

Antimicrobial Activity of Korean Herbal Complex Extract and Clay Mineral Mixture against Escherichia coli O157:H7 (한약재 복합추출물과 점토 광물질 혼합제의 Escherichio coli O157:H7에 대한 항균효과)

  • Lee, Yeon-Ok;Jung, Won-Chul;Cha, Chun-Nam;Kim, Gon-Sup;Lee, Yeo-Eun;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • The present study was evaluated the antibacterial effect of the combination of Coptidis rhizoma, Lonicerae Flos, and Paeonia japonica (1:1:1) extracts (CLP1000). Also, the effectiveness of CLP1000, dioctahedral smectite (DHS), and the combination of CLP1000 and DHS (CLPS1000) against E. coli O157:H7 infection was studied using ICR female mice. During the incubation period, the dose of 10% and 20% CLP1000 were inhibited the growth of E. coli O157:H7 by 30% and 47%, respectively. For 7 days after single challenge with E. coli O157:H7, forty female ICR mice were divided into four experimental groups which were orally administered with saline, 10% CLP1000, 10% DHS, and 10% CLPS1000, respectively. On the 3rd day, the number of E. coli O157:H7 in mouse feces was significantly decreased by administration of CLP1000 (p < 0.05), DHS (p < 0.05) and CLPS1000 (p < 0.001). On the 7th day, CLP1000 (p < 0.05) and CLPS1000 p < 0.001) administration significantly decreased the number of E. coli O157:H7. According to the results of the present study, administration of CLPS1000 to mice can reduce the severity of E. coli O157:H7 infection. Also, it is suggested that CLPS100 represents a good candidate for the treatment of enteric infections in domestic animals.

Persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in Soil, Liquid Manure Amended Soil, and Liquid Manure

  • Jung, Kyu-Seok;Kim, Min-Ha;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.432-436
    • /
    • 2014
  • While searching for healthier diets, people became more attentive to agricultural organic products. However, organic foods may be more susceptible to microbiological contamination because of the use of livestock manure compost and liquid manure, potential sources of pathogenic bacteria. This study was undertaken to investigate the persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in soil, liquid manure amended soil, and liquid manure. Loamy soil, liquid manure amended soil, and liquid manure were inoculated with S. enterica, E. coli O157:H7, and L. monocytogenes. Samples were incubated in consistent moisture content at $25^{\circ}C$. Samples had been periodically collected during 120 days depending on the given conditions. S. enterica and E. coli O157:H7 survived over 120 days in loamy soil and over 60 days in liquid manure amended soil, respectively. L. monocytogenes decreased faster than other pathogens in soil. S. enterica, E. coli O157:H7, and L. monocytogenes survived for up to 5 days in liquid manure. S. enterica and E. coli O157:H7 in soil decreased by 2 to $2.5log\;CFU\;g^{-1}$ for 120 days. S. enterica and E. coli O157:H7 in liquid manure amended soil decreased slowly for 21 days. However, S. enterica, E. coli O157:H7, and L. monocytogenes sharply decreased after 21 days. S. enterica, E. coli O157:H7, and L. monocytogenes in soil increased by 0.5 to $1.0log\;CFU\;g^{-1}$ for 7 days. Foodborne pathogens in soil and liquid manure amended soil gradually decreased over time.

Antimicrobial Activity of Sodium chlorate and Korean Herbal Extracts against Mice infected with Escherichia coli O157:H7 (Escherichia coli O157:H7에 감염된 마우스에 대한 염소산나트륨과 한약재 복합추출물 합제의 항균효과)

  • Cha, Chun-Nam;Lee, Yeo-Eun;Son, Song-Ee;Park, Eun-Kee;Choi, Hyun-Ju;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • The present study was evaluated the antibacterial effect of the combination of $Coptidis$ $rhizoma$, $Glycyrrhiza$ $uralensis$ Fischet, $Schizandra$ $chinensis$ and $Corni$ $Fructus$(1:1:1) extracts(CGSC10). Furthermore, the effectiveness of CGSC10, sodium chlorate, and the combination of CGSC10 and sodium chlorate(CGSCS10) against $E.$ $coli$ O157:H7 infection was studied using ICR female mice. During the incubation period, the dose of 5, 10, and 20% CGSC10 was inhibited the growth of $E.$ $coli$ O157:H7 by 34.7, 60.2, and 76.4%, respectively. For 7 days after single challenge with $E.$ $coli$ O157:H7, forty female ICR mice were divided into four experimental groups which were administered in drinking water with saline, 10% CGSC10, 15 mM sodium chlorate, and CGSCS10, respectively. On the 3rd day, the number of $E.$ $coli$ O157:H7 in mouse feces was significantly decreased by administration of CGSC10, 15 mM sodium chlorate, and CGSCS10 ($p$ < 0.001). On the 7th day-after administration, CGSC10, sodium chlorate, and CGSCS10 were decreased the number of $E.$ $coli$ O157:H7 by 27.1, 67.7, and 83.3%, respectively. According to the results of the present study, administration of CGSCS10 to mice can reduce the severity of $E.$ $coli$ O157:H7 infection. In addition, it is suggested that CGSCS10 represents a good candidate for the treatment of enteric infections in domestic animals.

Image Analysis of a Lateral Flow Strip Sensor for the Detection of Escherichia coli O157:H7

  • Kim, Giyoung;Moon, Ji-Hea;Park, Saet Byeol;Jang, Youn-Jung;Lim, Jongguk;Mo, Changyeun
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.335-340
    • /
    • 2013
  • Purpose: This study was performed to develop a lateral flow strip sensor for the detection of pathogenic Escherichia coli O157:H7 in various samples. Also, feasibility of using an image analysis method to improve the interpretation of the strip sensor was evaluated. Methods: The lateral flow strip sensor has been fabricated based on nitrocellulose lateral-flow membrane. Colloidal gold and E. coli O157:H7 antibodies were used as a tag and a receptor, respectively. Manually spotted E. coli O157:H7 antibody and anti-mouse antibody on nitrocellulose membrane were used as test and control dots, respectively. Feasibility of the lateral flow strip sensor to detect E. coli O157:H7 were evaluated with serially diluted E. coli O157:H7 cells in PBS or food samples. Test results of the lateral flow strip sensor were measured with an image analysis method. Results: The intensity of the test dot started to increase with higher concentration of the cells were introduced. The sensitivities of the sensor were both $10^4$ CFU/mL Escherichia coli O157:H7 spiked in PBS and in chicken meat extract, respectively. Conclusions: The lateral flow strip sensor and image analysis method could detect E. coli O157:H7 in 20 min, which is significantly quicker than conventional plate counting method.

Elimination of Escherichia coli O157:H7 Contaminated in Frozen Beef by Electron Beam Irradiation (전자선 조사에 의한 동결육에 오염된 Escherichia coli O157:H7 의 제거)

  • Kwon, Oh-Jin;Yang, Jae-Seung;Lim, Seong-Il;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.771-775
    • /
    • 1997
  • Treatment with electron beam irradiation was investigated for the elimination of Escherichia coli O157:H7 which has been linked to outbreaks of foodborne illness on undercooked and raw meat. Before treatment, the maximum populations were observed at 16 hr when E. coli O157:H7 was incubated in TSB at $37^{\circ}C$. Incubation at $4^{\circ}C$ did not influence survival and growth of the strain. The numbers of E. coli O157:H7 were present about $10^{7}\;CFU/mL$ in the log $(6\;hr\;at\;37^{\circ}C)$ and stationary phase $(16\;hr\;at\;37^{\circ}C)$ of cells, respectively. Freezing $(24\;hr\;at\;-18^{\circ})$ had a more marked lethal effect. The $D_{10}$ value at $-18^{\circ}C$ of E. coli O157:H7 contaminated in frozen beef was 0.45 kGy, and inactivation factor were $6.67{\sim}11.11$ at the radiation doses of $3{\sim}5\;kGy$. Therefore, electron beam irradiation was an effective method to eleminate of E. coli O157:H7.

  • PDF

Combination Effect of UV-C and Mild Heat Treatment Against Artificially Inoculated Escherichia coli O157:H7, Salmonella Typhimurium on Black Pepper Powder (후춧가루에 인위접종된 Escherichia coli O157:H7, Salmonella Typhimurium에 대한 UV-C와 mild heat의 살균 효과)

  • Gwak, Seung-Hae;Kim, Jin-Hee;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.495-499
    • /
    • 2018
  • The reduction effect of UV-C irradiation and mild heat treatment was examined against Escherichia coli O157:H7 and Salmonella Typhimurium on black pepper powder. E. coli O157:H7 (ATCC 35150) and S. Typhimurium (ATCC 19585) were inoculated onto black pepper powder at approximately $10^7$ and $10^6CFU/g$, respectively. E. coli O157:H7 and S. Typhimurium were treated with UV-C and mild heat at $60^{\circ}C$. A UV-C intensity ($2.32W/cm^2$ ) was used for 10 min to 70 min at $60^{\circ}C$. After UV-C and heat treatment at $60^{\circ}C$, microbial analysis and color change of black pepper powder was conducted. E. coli O157:H7 and S. Typhimurium were reduced by a level of 1.89 and 2.24 log CFU/g, respectively, when treated with UV-C alone for 70 min. And E. coli O157:H7 and S. Typhimurium were reduced by 2.22 and 5.10 log CFU/g, respectively, when treated with mild heat treatment at $60^{\circ}C$ alone for 70 min. But when combined with UV-C and mild heat, it showed higher levels of reduction by 2.46 and 5.70 log CFU/g. S. Typhimurium was more easily reduced than E. coli O157:H7. Color values were not significantly (p > 0.05) different in all treated samples. Therefore, these results suggest that the combined treatment with UV-C and mild heat was effective to inactivate the food pathogens in black pepper powder and can be used as a food industrial microbial intervention method.

Antimicrobial Activity of Garlic Juice against Escherichia coli O157:H7 (마늘즙의 Escherichia coli O157:H7에 대한 항균작용)

  • Kim, Myung-Hee;Kim, So-Young;Shin, Weon-Sun;Lee, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.752-755
    • /
    • 2003
  • The antimicrobial activity of fresh garlic juice against Escherichia coli O157:H7 was investigated. When E. coli O157:H7 was cultured for 18 hr in the trypticase soy broth containing 1%, 3%, and 5% garlic juice, viable cell number of E. coli O157:H7 was reduced to $2.3{\times}10^2\;CFU/mL$ at 5% from $7{\times}10^8\;CFU/mL$ at the non-treated culture, respectively. The inhibitory effects of the ground beef treated with 3%, 6%, and 10% garlic juice against E. coli O157:H7 was significantly enhanced with approximate 2 log-reduction compared to that of ground beef without garlic. There was no significant difference in the inhibition of E. coli O157:H7 among the groups with different amounts of garlic juice (p<0.05). These results suggest that garlic juice may function well as a natural preservative in food system.

Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes by Hydrogen Peroxide and Lactic acid (과산화수소와 유산ol Escherichia coli O157:H7, Salmonella Enteritidis 및 Listeria monocytogenes의 증식 억제에 미치는 영향)

  • Jang Jae-Seon;Lee Mi-Yeon;Lee Jea-Mann;Kim Yong-Hee
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.69-75
    • /
    • 2004
  • The inhibitory effect of the food processing agent on growth of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes was performed with hydrogen peroxide and lactic acid, and combination of hydrogen peroxide and lactic acid. The minimun inhibitory concentration (MIC) of hydrogen peroxide in E coli O157:H7 was 100 ppm at pH 5.0, 6.0, 6.5 and 7.0, while in Listeria monocytogenes 25 ppm at PH 5.5, 6.0 and 50 ppm at PH 6.5, 75ppm at pH 7.0. MIC of lactic acid in E coli O157:H7 was 2500 ppm at pH 5.0, 6.0, 6.5 and 7.0. MIC of lactic acid in S. Enteritidis was 1250 ppm at pH 5.0, 2500 ppm at pH 5.5, 6.0, 5.5 and 7.0, while in L monocytogenes 625 ppm at pH 5.5 and 125 ppm at pH 6.0, 6.5 and 7.0. MIC of combined hydrogen Peroxide and lactic acid in E. coli O157:H7, S. Enteritidis, and L. monocytogenes was 75 ppm of hydrogen peroxide with 2500 ppm of lactic acid at pH 6.5. The correlations between MICs of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogene were obtained through the coefficient of $determination(R^2)$. $R^2$ value were 0.9994, 0.9935 and 0.9283, respectively. The inhibitory effect of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogenes could be confirmed from the result of this experiment. Therefore, it was expected that the food process would increase or maintain by using lactic acid together with hydrogen peroxide.