• Title/Summary/Keyword: E. coli host cell DNA

Search Result 25, Processing Time 0.027 seconds

Development of a Novel Vector System for Programmed Cell Lysis in Escherichia coli

  • Yun, Ji-Ae;Park, Ji-Hye;Park, Nan-Joo;Kang, Seo-Won;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1162-1168
    • /
    • 2007
  • Although widely used as a host for recombinant protein production, Escherichia coli is unsuitable for massive screening of recombinant clones, owing to its poor secretion of proteins. A vector system containing T4 holin and T7 lysozyme genes under the control of the ptsG promoter derivative that is inducible in the absence of glucose was developed for programmed cell lysis of E. coli. Because E. coli harboring the vector grows well in the presence of glucose, but is lysed upon glucose exhaustion, the activity of the foreign gene expressed in E. coli can be monitored easily without an additional step for cell disruption after the foreign gene is expressed sufficiently with an appropriate concentration of glucose. The effectiveness of the vector was demonstrated by efficient screening of the amylase gene from a Bacillus subtilis genomic library. This vector system is expected to provide a more efficient and economic screening of bioactive products from DNA libraries in large quantities.

Structural Characteristics of Expression Module of Unidentified Genes from Metagenome (메타게놈 유래 미규명 유전자의 발현에 관련된 특성분석)

  • Park, Seung-Hye;Jeong, Young-Su;Kim, Won-Ho;Kim, Geun-Joong;Hur, Byung-Ki
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2006
  • The exploitation of metagenome, the access to the natural extant of enormous potential resources, is the way for elucidating the functions of organism in environmental communities, for genomic analyses of uncultured microorganism, and also for the recovery of entirely novel natural products from microbial communities. The major breakthrough in metagenomics is opened by the construction of libraries with total DNAs directly isolated from environmental samples and screening of these libraries by activity and sequence-based approaches. Screening with activity-based approach is presumed as a plausible route for finding new catabolic genes under designed conditions without any prior sequence information. The main limitation of these approaches, however, is the very low positive hits in a single round of screening because transcription, translation and appropriate folding are not always possible in E. coli, a typical surrogate host. Thus, to obtain information about these obstacles, we studied the genetic organization of individual URF's(unidentified open reading frame from metagenome sequenced and deposited in GenBank), especially on the expression factors such as codon usage, promoter region and ribosome binding site(rbs), based on DNA sequence analyses using bioinformatics tools. And then we also investigated the above-mentioned properties for 4100 ORFs(Open Reading Frames) of E. coli K-12 generally used as a host cell for the screening of noble genes from metagenome. Finally, we analyzed the differences between the properties of URFs of metagenome and ORFs of E. coli. Information derived from these comparative metagenomic analyses can provide some specific features or environmental blueprint available to screen a novel biocatalyst efficiently.

Study on Expression and Characterization of HRD3 Gene Related DNA Repair from Eukaryotic Cells (진핵세포에서 DNA 회복에 관련된 HRD3 유전자의 분리, 발현 및 특성 연구)

  • Shin, Su-Hwa;Park, In-Soon
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.325-330
    • /
    • 2004
  • The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA-RNA helicase activities. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, the RAD3 homolog gene was isolated by screening of genomic DNA library. The isolated gene was designated as HRD3 (Homologue of RAD3 gene). The over-expressed HRD3 protein was estimated to be a 75 kDa in size which is in good agreement with the estimated by the nucleotide sequence of the cloned gene. Two-dimensional gel electrophoresis showed that a number of other protein spots dramatically disappeared when the HRD3 protein was overexpressed. The overexpressed RAD3 protein showed a toxicity in E. coli host, suggesting that this protein may be involved in the inhibition of protein synthesis and/or degradation of host protein. To determine which part of HRD3 gene contributes to the toxicity in E. coli, various fusion plasmids containing a partial sequence of HRD3 and lac'Z gene were constructed. These results suggest that the C-terminal domain of HRD3 protein may be important for both toxic effect in E. coli and for its role in DNA repair in S. pombe.

Overexpression and Purification of Bacillus subtilis Glutamyl-tRNA Synthetase in Escherichia coli (대장균에서 Bacillus subtilis glutamyl-tRNA synthetase의 과발현 및 정제)

  • Oh, Jong-Shin;Yoon, Jang-Ho;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.190-194
    • /
    • 2002
  • Expression of Bacillus subtilis glutamyl-tRNA synthetase (GluRS) in Escherichia coli is lethal for the host, probably because this enzyme misaminoacylates ${tRNA_l}^{Gln}$ with glutamate in vivo. In order to overexpress B. subtilis GluRS, encoded by the gltX gene, in E. coli, this gene was amplified from B. subtilis 168 chromosomal DNA using PCR method and the entire coding region was cloned into a pET11a expression vector so that it was expressed under the control or the T7 Promoter. The resulting recombinant pEBER plasmid was transformed into E. coli Novablue (DE3) bearing the T7 RNA polymerase gene for expression. After IPTG treatment, the overproduced enzyme was purified using ammonium sulfate fractionation, Source Q anion exchange chromatography, Superdex-200 gel filtration, and Mono Q anion exchange chromatography. The purified enzyme yielded 18-fold increase in specific activity over the crude cell extract and its molecular weight was approximately 55 kDa on SDS-PAGE.

Expression of Glucose Isomerase Gene from Bacillus licheniformis in Escherichia coli. (Bacillus licheniformis 포도당 이성화 효소 유전자의 Excherichia coli에 발현)

  • 신명교;고영희
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.138-146
    • /
    • 1985
  • A Bacillus licheniformis ATCC31667 gene coding for a glucose isomerase has been cloned and expressed in glucose isomerase negative mutant of Escherichia coli. A recombinant plasmid, constructed by ligation of a EcoRI fragment of B.licheniformis chromosomal DNA to vector plasmid pBR322, was expressed glucose isomerase positive in E.coli LE392-6 with growth on minimal medium containing xylose as a sole carbon source. This recombinant plasmid, designated pBGI6, had the insery of 4.1Kb of Bacillus gene in EcoRI site, and restriction map of the plasmid was established. The plasmid pBG16 was very stable after 10days of serial transfer to a fresh medium. The activity of glucose isomerase from the transformed cell containing pBGI6 was increased about 20 fold than its wild type of host.

  • PDF

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

Construction and Characterization of the Vibrio parahaemolyticus Collagenase Inactivated Mutant (Vibrio parahaemolyticus collagenase 불활성화 돌연변이체의 제조 및 특성)

  • 이재원;전인준;강호영;차재호
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.362-367
    • /
    • 2004
  • For better understanding of the host infection mechanism of Vibrio, a Vibrio parahaemolyticus collagenase mutant was generated by insertional inactivation of a vppC gene encoding extracellular collagenase. A recombinant DNA containing vppC::nptII was cloned into a suicide plasmid pDMS197, resulted in pVCM03. The recombinant suicide plasmid pVCM03 contained in E. coli $\chi$7213 was transferred to a wild-type V. parahaemolyticus 04 through conjugation. The recombinant vppC::nptII DNA in pVCM03 was exchanged with wild-type allele by homologous recombination resulting vppC mutant, V. parahaemolyticus CM. The mutant was selected and screened on TCBS media containing 10% sucrose and kanamycin. The mutation by allele exchange was confirmed with the comparison of the size of DNAs amplified by PCR. V. parahaemolyticus CM showed at least 4-fold less collagen-degrading activity than those of wild-type, and the mutant exhibited less cytotoxicity than that of wild-type in MTT assay.

Gene Cloning and Characterization of MdeA, a Novel Multidrug Efflux Pump in Streptococcus mutans

  • Kim, Do Kyun;Kim, Kyoung Hoon;Cho, Eun Ji;Joo, Seoung-Je;Chung, Jung-Min;Son, Byoung Yil;Yum, Jong Hwa;Kim, Young-Man;Kwon, Hyun-Ju;Kim, Byung-Woo;Kim, Tae Hoon;Lee, Eun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.430-435
    • /
    • 2013
  • Multidrug resistance, especially multidrug efflux mechanisms that extrude structurally unrelated cytotoxic compounds from the cell by multidrug transporters, is a serious problem and one of the main reasons for the failure of therapeutic treatment of infections by pathogenic microorganisms as well as of cancer cells. Streptococcus mutans is considered one of the primary causative agents of dental caries and periodontal disease, which comprise the most common oral diseases. A fragment of chromosomal DNA from S. mutans KCTC3065 was cloned using Escherichia coli KAM32 as host cells lacking major multidrug efflux pumps. Although E. coli KAM32 cells were very sensitive to many antimicrobial agents, the transformed cells harboring a recombinant plasmid became resistant to several structurally unrelated antimicrobial agents such as tetracycline, kanamycin, rhodamin 6G, ampicillin, acriflavine, ethidium bromide, and tetraphenylphosphonium chloride. This suggested that the cloned DNA fragment carries a gene encoding a multidrug efflux pump. Among 49 of the multidrug-resistant transformants, we report the functional gene cloning and characterization of the function of one multidrug efflux pump, namely MdeA from S. mutans, which was expressed in E. coli KAM32. Judging from the structural and biochemical properties, we concluded that MdeA is the first cloned and characterized multidrug efflux pump using the proton motive force as the energy for efflux drugs.

Cloning and protein expression of Aggregatibacter actinomycetemcomitans cytolethal distending toxin C

  • Lee, Eun-Sun;Park, So-Young;Lee, Eun-Suk;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.317-324
    • /
    • 2008
  • Purpose: Aggregatibacter actinomycetemcomitans was associated with localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis. The cytolethal distending toxin (CDT) of A. actinomycetemcomitans was considered as a key factor of these diseases is composed of five open reading frames (ORFs). Among of them, An enzymatic subunit of the CDT, CdtB has been known to be internalized into the host cell in order to induce its genotoxic effect. However, CdtB can not be localized in host cytoplasm without the help of a heterodimeric complex consisting of CdtA and CdtC. So, some studies suggested that CdtC functions as a ligand to interact with GM3 ganglioside of host cell surface. The precise role of the CdtC protein in the mechanism of action of the holotoxin is unknown at the present time. The aim of this study was to generate recombinant CdtC proteins expression from A. actinomycetemcomitans, through gene cloning and protein used to investigate the function of Cdt C protein in the bacterial pathogenesis. Materials and Methods: The genomic DNA of A. actinomycetemcomitans Y4 (ATCC29522) was isolated using the genomic DNA extraction kit and used as template to yield cdtC genes by PCR. The amplifed cdtC genes were cloned into T-vector and cloned cdt C gene was then subcloned to pET28a expression vector. The pET28a-cdtC plasmid expressed in BL21 (DE3) Escherichia coli system. Diverse conditons were tested to opitimize the expression and purification of functional CdtC protein in E. coli. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and comfirmed the recombinant CdtC expression by SDS-PAGE and Western Blotting. The expression level of the recombinant CdtC was about 2% of total bacterial proteins. Conclusion: The lab condition of procedure for the purification of functionally active recombinant CdtC protein is established. The active recombinant CdtC protein will serve to examine the role of CdtC proteins in the host recognition and enzyme activity of CDT and investigate the pathological process of A. actinomycetemcomitans in periodontal disease.

Production of the polyclonal subunit C protein antibody against Aggregatibacter actinomycetemcomitans cytolethal distending toxin

  • Lee, Su-Jeong;Park, So-Young;Ko, Sun-Young;Ryu, So-Hyun;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.335-342
    • /
    • 2008
  • Purpose: Cytolethal distending toxin (CDT) considered as a key factor of localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis is composed of five open reading frames (ORFs). Among of them, the individual role of CdtA and CdtC is not clear; several reports presents that CDT is an AB2 toxin and they enters the host cell via clathrin-coated pits or through the interaction with GM3 ganglioside. So, CdtA, CdtC, or both seem to be required for the delivery of the CdtB protein into the host cell. Moreover, recombinant CDT was suggested as good vaccine material and antibody against CDT can be used for neutralization or for a detection kit. Materials and Methods: We constructed the pET28a-cdtC plasmid from Aggregatibacter actinomycetemcomitans Y4 by genomic DNA PCR and expressed in BL21 (DE3) Escherichia coli system. We obtained the antibody against the recombinant CdtC in mice system. Using the anti-CdtC antibody, we test the native CdtC detection by ELISA and Western Blotting and confirm the expression time of native CdtC protein during the growth phase of A. actinomycetemcomitans. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and generated the anti CdtC antibody against recombinant CdtC subunit expressed in E. coli system. Our anti CdtC antibody can be interacting with recombinant CdtC and native CDT in ELISA and Western system. Also, CDT holotoxin existed at 24h but not at 48h meaning that CDT holotoxin was assembled at specific time during the bacterial growth. Conclusion: In conclusion, we thought that our anti CdtC antibody could be used mucosal adjuvant or detection kit development, because it could interact with native CDT holotoxin.