• Title/Summary/Keyword: E-coli

Search Result 5,166, Processing Time 0.029 seconds

Development of a One-Step PCR Assay with Nine Primer Pairs for the Detection of Five Diarrheagenic Escherichia coli Types

  • Oh, Kyung-Hwan;Kim, Soo-Bok;Park, Mi-Sun;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.862-868
    • /
    • 2014
  • Certain Escherichia coli (E. coli) strains have the ability to cause diarrheal disease. Five types of diarrheagenic E. coli have been identified, including EHEC, ETEC, EPEC, EAEC, and EIEC. To detect these five diarrheagenic types rapidly, we developed a one-step multiplex PCR (MP-PCR) assay using nine primer pairs to amplify nine virulence genes specific to the different virotypes, with each group being represented (i.e., stx1 and stx2 for EHEC, lt, sth, and stp for ETEC, eaeA and bfpA for EPEC, aggR for EAEC, and ipaH for EIEC). The PCR primers were constructed using MultAlin. The sensitivity and specificity of the constructed multiplex PCR primers were measured using DNA isolated from diarrheagenic E. coli strains representing each group. The limits of detection were as follows: $5{\times}10^1CFU/ml$ for EHEC, $5{\times}10^3CFU/ml$ for ETEC expressing lt and sth, $5{\times}10^4CFU/ml$ for ETEC expressing stp, $5{\times}10^2CFU/ml$ for EPEC, $5{\times}10^4CFU/ml$ for EAEC, and $5{\times}10^2CFU/ml$ for EIEC. To confirm the specificity, C. jejuni, C. perfringens, S. Typhimurium, V. parahaemolyticus, L. monocytogenes, Y. enterocolitica, B. cereus, and S. aureus were used as negative controls, and no amplification was obtained for these. Moreover, this kit was validated using 100 fecal samples from patients with diarrhea and 150 diarrheagenic E. coli strains isolated in Korea. In conclusion, the multiplex PCR assay developed in this study is very useful for the rapid and specific detection of five diarrheagenic E. coli types. This single-step assay will be useful as a rapid and economical method, as it reduces the cost and time required for the identification of diarrheagenic E. coli.

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Antimicrobial resistance of Escherichia coli isolated from wild birds in Daegu (대구지역 야생조류에서 분리된 대장균의 항생제 내성 조사)

  • Kim, Kyung-Hee;Lim, Hyun-Suk;Lee, Jung-Woo;Park, Dae-Hyun;Yang, Chang-Ryoul;Cho, Jae-Keun
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • This study was aimed to investigate occurrence and the antimicrobial resistance of Escherichia coli isolates obtained from the feces of wild birds in Daegu. In total, 98 E. coli isolates (17.9%) were obtained from 547 fecal samples of wild birds. The E. coli carried by the birds showed a relatively high rate of antimicrobial resistance to tetracycline (27.6%) and ampicillin (21.4%). Drug resistance of the isolates to the others (penicillins, cephems, carbapenems, aminoglycosides, quinolones, sulfonamides and phenicols) resulted in the rates less than 20%, and all isolates were susceptible to imipenem, ciprofloxacin, cefotetan, and amikacin. Approximately, 45% E. coli among the isolates were resistant to one or more drugs tested. The higher rate of tetracycline resistance led us to determine the prevalence of the tet genes (tetA, tetB, tetC, tetD and tetE) in the tetracycline-resistant E. coli isolates by using PCR. All isolates of the tetracycline-resistant E. coli contained at least one or more of these tet genes examined. The most prevalent one was tetA (59.3%), and followed by tetB (7.4%) when tested with the selected 5 tet genes. Except tetA and tetB, however, the remaining tet genes (tetC, tetD, and tetE) tested were not found in this study. Nine isolates among the tetracycline-resistant E. coli contained the two (tetA and tetB) determinants of tetracycline resistance, simultaneously.

Effects of $aroP^{-}$ mutation on the tryptophan excretion in escherichia coli ($aroP^{-}$변이가 E.coli에서 트립토판 방출에 미치는 영향)

  • 지연태;안병우;이세영
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.9-12
    • /
    • 1985
  • As a part of the host cell development for a amplified recombinant trp operon, $aroP^-$ mutation was introduced in a E. coli host strain. $aroP^-$ mutation was induced by transposon Tn10 and transduced into the E. coli host cell by bacteriophage P1Kc. The effect of $aroP^-$ mutation on the excretion of tryptophan in E. coli $trpR^{-ts}/ColE_1 -trp^+$ cells was investigated. Mutant lacking the general aromatic transport system was resistant to ${\beta}-2-thienylalanine\;(2{\times}10^{-4}\;M)$, p-fluorophenylalanine $(2{\times}10^{-4}M)$, or 5-methyltryptophan $(2{\times}10^{-4}\;M.)[^3H]-tryptophan$ uptake of the $aroP^-$ mutant strain was reduced considerably as compared with $aroP^+$ counterpart. The rate of $[^3H]-tryptophan$ uptake of the $aroP^-$ mutant strain treated with $NaN_3(3{\times}10^{-2}\;M)$ was much less affected than that of $aroP^+$ counterpart. The $aroP^-$ transductants increased the tryptophan excretion from E. coli $trpR^{-ts}/ColE_1 -trp^+$ four times more than $aroP^+$ counterpart.

  • PDF

Inhibition of Escherichia coli 0157:H7 by Clove (Eugenia Caryophyllata Thumb) (Clove(Eugenia Caryophyllata Thumb)에 의한 Escherichia coli 0157:H7의 증식과 생존억제)

  • 박찬성
    • Korean journal of food and cookery science
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • The inhibitory effect of clove (Eugenia caryophyllata Thumb) on the growth of Escherichia coli 0157:H7 was determined. Tryptic soy broth (TSB) containing 0∼0.5% (w/v) of clove was inoculated with 10/sup/5∼10/sup/7 CFU/ml of E. coli and incubated at 5 different temperature (35, 5, -20, 50 and $55^{\circ}C$). The growth of E. coli was not inhibited at 0.1% clove and growth occured at 0.3% after a prolonged lag period while viable cells of E. coli decreased at 0.5% clove during storage at $35^{\circ}C$. During 32 days of refrigerated storage at $5^{\circ}C$, survivors of E. coli were decreased with the progress of time and increasing clove concentration. At the presence of 0.3 or 0.4% clove, bacterial cells were dead at the end of refrigerated storage. During frozen storage at -$20^{\circ}C$, survivors of E. coli at the presence of 0∼0.4% clove were decreased 2.9∼4.07 log cycles for 4 days of early period and then decreased 1.0∼2.1 log cycles through the frozen storage. There were small changes in populations of E. coli in TSB between different concentrations of clove during frozen storage. The D-values for E. coli at $50^{\circ}C$ were 105.26, 22.47, 13.76, 11.14 and 10.17 min at clove 0, 0.1, 0.2, 0.3, 0.4%, respectively. The D-values for E. coli at $55^{\circ}C$ were 10.75, 8.95, 7.40, 5.96 and 4.96 min at clove 0, 0.1, 0.2, 0.3, 0.4%, respectively. Antibacterial activity of clove against E. coli was more effective at $50^{\circ}C$ than at $55^{\circ}C$.

  • PDF

Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum

  • Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.975-987
    • /
    • 2016
  • Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium.

Immunosensor for Detection of Escherichia coli O157:H7 Using Imaging Ellipsometry

  • Bae Young-Min;Park Kwang-Won;Oh Byung-Keun;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1169-1173
    • /
    • 2006
  • Imaging ellipsometry (IE) for detection of binding of Escherichia coli O157:H7 (E. coli O157:H7) to an immunosensor is reported. A protein G layer, chemically bound to a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA), was adopted for immobilization of monoclonal antibody against E. coli O157:H7 (Mab). The immobilization of antibody was investigated using surface plasmon resonance. To fabricate antibody spots on a gold surface, protein G solution was spotted onto the gold surface modified with an 11-MUA layer, followed by immobilizing Mab on the protein G spot. Ellipsometric images of the protein G spot, the Mab spot, and Mab spots with binding of E. coli O157:H7 in various concentrations were acquired using the IE system. The change of mean optical intensity of the Mab spots in the ellipsometric images indicated that the lowest detection limit was $10^3$CFU/ml for E. coli O157:H7. Thus, IE can be applied to an immunosensor for detection of E. coli O157:H7 as a detection method with the advantages of allowing label-free detection, high sensitivity, and operational simplicity.

Mapping of Gene Encoding Phospho-$\beta$-galactosidase from Lactobacillus casei and its Expression in Escherichea coli (Lactobacillus casei 의 Phospho-$\beta$-galactosidase 유전자의 지도작성과 Escherichia coli 내에서의 발현)

  • 박정희;문경희;민경희
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.539-545
    • /
    • 1992
  • Recombinant plasmid pPLac15 determined both phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and phospho-$\beta$-galactosidase (Moon et al., 1989). A restriction mapping of the pPLac15 was compiled with several restriction enzymes and a seriese of sub clones into pUC18 was constructed. From an analysis of the proteins produced by Escherichia coli cells of transformants containing each of the recombinant subclone plasmids, it was found that the gene for phospho-$\beta$-galactosidase in pUCI8 was expressed about 1.8-folds in E. coli.

  • PDF

세 가지 균주 유래의 N-acetylneuraminate lyase 비교; Escherichia coli, Haemophilus influenzae, Clostridium perfringens.

  • Lee, Jeong-Ho;Kim, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • The N-acetylneuraminate lyase(NALase) from Escherichia coli was cloned and it was compared to that from Haemophilus influenzae and Clostridium perfringens. NALase from E. coli was expressed in very high level(about 6U/mg). The ManNAc Km value of three enzymes was almost the same. Pyruvate inhibited from H. influenzae was inhibited by GlcNAc in lower level than the others. The crude extract has about 30 times more activity than the cell for the substrate and product diffusion limit problem. The pH stability of three enzymes at pH 11 was also checked for its importance in the direct synthesis of Neu5Ac from GlcNAc and pyruvate at high alkaline condition.

  • PDF

Combination Effects of Benzoate, Sorbate and pH for Control of Escherichia coli O157:H7 (Escherichia coli O157:H7의 제어를 위한 Benzoate, Sorbate 및 pH의 병용처리 효과)

  • 권오진;김덕진;변명우
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 1997
  • Effects of benzoate (0~0.6 g/$\ell$ ) and sorbate (0~2.0 g/$\ell$) on the growth of Escherichia coli O157:H7 in tryptic soy broth at various pH levels (4~8) and temperatures (4$^{\circ}C$, 37$^{\circ}C$) were investigated. Benzoate and sorbate were inhibited the growth of E. coli O157:H7 up to 12 hours cultivation at 4$^{\circ}C$, and 2.0 g/$\ell$ sorbate was only inhibited during 48 hours cultivation at 37$^{\circ}C$. Among the pH levels tested, pH 4 showed significant inhibitory effect against the E. coli O157:H7 on 4$^{\circ}C$ and at 37$^{\circ}C$, respectively. When used in combination 0.2 g/$\ell$ benzoate and sorbate were completely inhibited the growth of E. coli O157:H7 on pH 4 and at 37$^{\circ}C$. While on pH 5 at 4$^{\circ}C$, all of the concentration tested did not exert any inhibitory effect. The combined effects were retarded more than single treatment of E. coli O157:H7.

  • PDF