• Title/Summary/Keyword: E-beam

Search Result 1,957, Processing Time 0.034 seconds

A Study of Cu-doped CdS thin film by E-beam (E-beam 제작된 Cu-doped CdS 박막에 관한 연구)

  • Kim, Seong-Ku;Park, Gye-Choon;Jo, Jae-Cheol;Jung, Woon-Jo;Rye, Yong-Tek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.67-72
    • /
    • 1992
  • In this paper, We prepared the thin film Cu-doped CdS Photovoltaic Cell, varying deposition condition by E-beam process and investigated its properties. After the Cu/CdS films were deposited on transparent ITO glass. We heat-treated to diffuse Cu atoms to CdS fi1m at 350[$^{\circ}C$]. With deposited Cu-doped CdS film. We investigated the electrical. optical. X-ray diffraction and junction property. We studied how to prepare the High conversion efficiency Solar cell window layer.

  • PDF

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

Carbon nanotubes field emission tip for micro sized E-beam array system (초소형 전자빔 array에 적용 가능한 탄소 나노튜브 전자방출원 제작)

  • Eom, Bo-Se;Han, Chang-Ho;Chun, Kuk-Jin;Yum, Min-Hyung;Yang, Ji-Hun;Park, Chong-Yun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.541-542
    • /
    • 2006
  • In this paper, I propose the field emission tip for the E-beam array system that is made by carbon nanotubes(CNT). CNT is one of the most expected future materials, because of its great mechanical, chemical and electrical characteristics. So CNT can be used for many applications such as electron emitter, sensor, single electron transistor and AFM tip. And CNT will be applied to our E-beam array system as field emission tip so we will improve the system's electrical characteristics.

  • PDF

Static and Dynamic Characteristics of PT-IGBT by Proton Irradiation (양성자 주입 조건에 따른 PT-IGBT의 정특성 및 동특성 분석)

  • Choi, Sung-Hwan;Lee, Yong-Hyun;Bae, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.14-15
    • /
    • 2007
  • Proton irradiation technology was used for improvement of switching characteristics of the PT-IGBT. The proton irradiation was carried out at 5.56 MeV energy from the back side of processed wafers and at 2.39 MeV energy from the front side of the wafers. The on-state and off-state I-V characteristics and switching properties of the device were analyzed and compared with those of un-irradiated device and e-beam irradiated device which was conventional method for minority carrier lifetime reduction. The proton irradiated device by 5.56 MeV energy was superior to e-beam irradiated device for the on-state and off-state I-V characteristics, nevertheless turn-off time of proton irradiated device was superior to that of the e-beam irradiated device.

  • PDF

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

MOLECULAR DYNAMICS SIMULATION OF THE INTERACTION BETWEEN CLUSTER BEAMS AND SOLID SURFACES

  • Kang, Hee-Jae;Lee, Min-Wha;Whang, Chung-Nam
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.139-147
    • /
    • 1995
  • The mechanism of the ionized cluster beam deposition has been studied using Molecular Dynamics Simulation. The Embedded Atom Method(EAM) potential were used in the simulation. The impact of a Au95-cluster on Au(100) substrate was studied for the impact energies 0.15-10eV/atom. The dependency of the impact energy of cluster beam was observed. For the cluster energy impact of 10eV per atom, the defects on surface were created and the cluster embedded into substrate as an amorphous state. For the energy of 0.5eV per atom, the defect free homoepitaxial growth was observed and atomic scale nucleation was formated, which are in good agreement with experiment. Thus molecular dynamics simulation is very useful to study the mechanism of the ionized cluster beam deposition.

  • PDF

E-beam 증착법으로 형성한 Ti 박막 전극이 적용된 염료 감응형 태양전지에 관한 연구

  • Sim, Chung-Hwan;Kim, Yun-Gi;Kim, Hyeon-Gyu;Kim, Dong-Hyeon;Lee, Hae-Jun;Park, Jeong-Hu;Seong, Yeol-Mun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.267-267
    • /
    • 2010
  • 염료 감응형 태양전지는 일반적으로 투명 전극 기판, 염료가 흡착된 $TiO_2$, 전해질, Pt가 코팅된 투명 전극 기판으로 구성된다. 이 중 투명 전극 기판은 전체 재료비 중 60% 이상을 차지하여 이를 대체하는 새로운 구조에 대한 연구가 활발히 진행 중이다. 본 논문에서는 투명 전극 기판을 사용하지 않는 염료 감응형 태양전지를 연구하였다. $TiO_2$ 위에 e-beam 증착을 이용하여 다공성의 Ti 전극을 형성하였다. Ti 전극의 다공성은 SEM 분석 및 염료 흡착을 통해 확인하였다. Ti 전극의 두께가 증가함에 따라 표면저항은 감소하였으며, 태양전지의 효율은 증가하는 경향을 보였다. 또한 Ti 전극의 표면저항이 투명 전극 기판의 표면저항과 동등 수준일 경우 효율 또한 동등 수준을 나타내었다.

  • PDF

Behavior of High Strength Reinforced Concrete Wide Beam-Column Joint with Slab (슬래브가 있는 고강도 철근 콘크리트 넓은 보-기둥 접합부의 거동)

  • 최종인;안종문;신성우;박성식;이범식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.493-498
    • /
    • 2002
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete( $f_{ck}$ =240, 500kgf/c $m^2$), the ratio of the column-to-beam flexural capacity( $M_{r}$=2$\Sigma$ $M_{c}$$\Sigma$ $M_{b}$ ; 0.77-2.26), extended length of the column concrete($\ell$$_{d}$ ; 0, 9.6, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied the required minimum ductile capacity according to increase the compressive strength, (2). In the design of the wide beam-column joints, one should be consider the effects of slab stiffness which is ignored in the current design code and practice.ice.e.e.

  • PDF

An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.399-416
    • /
    • 2010
  • The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a rotational spring at another point. Where the fixed point of each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting point of the springs. The effects of the distance between the "fixed point" of each rigid bar and its center of gravity (i.e., eccentricity), and the distance between the "fixed point" and each linear spring (i.e., offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the predominant parameters.

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.