• Title/Summary/Keyword: E-Plane

Search Result 1,047, Processing Time 0.027 seconds

Circular Dual Mode Horn Antenna(CDMHA) with Modified Aperture to Improve E/H-Plane Radiation Pattern Symmetry (E/H 평면 방사 패턴 대칭성 향상을 위해 개구면이 변형된 원형 이중 모드 혼 안테나)

  • Kim, Jae Sik;Yoon, Ji Hwan;Yoon, Young Joong;Lee, Woo-Sang;So, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2013
  • In this paper, a circular dual mode horn with modified aperture is proposed to improve a E/H-plane radiation pattern symmetry of a conventional oversized circular dual mode horn. The proposed antenna consists of a feeding section, a mode generation section and a phase matching section which has aperture shape transition from circle to ellipse or rectangle to improve a E/H-plane radiation pattern symmetry. To compare the performances between the proposed antenna and the convenional circular dual mode horn, the conventional circular dual mode horn and the proposed circular dual mode horn with rectangular aperture are fabricated and researched at 15 GHz. The measured results show that the conventional circular dual mode horn has 3.394 dB difference while the proposed antenna has only 0.539 dB difference between E and H-plane radiation patterns within the -11 dB beamwidth($53^{\circ}$) which is required beamwidth of the feed horn for the maximum aperture efficiency where f/d ratio of reflector antenna is 1.

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

Volumetric Capacitance of In-Plane- and Out-of-Plane-Structured Multilayer Graphene Supercapacitors

  • Yoo, Jungjoon;Kim, Yongil;Lee, Chan-Woo;Yoon, Hana;Yoo, Seunghwan;Jeong, Hakgeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • A graphene electrode with a novel in-plane structure is proposed and successfully adopted for use in supercapacitor applications. The in-plane structure allows electrolyte ions to interact with all the graphene layers in the electrode, thereby maximizing the utilization of the electrochemical surface area. This novel structure contrasts with the conventional out-of-plane stacked structure of such supercapacitors. We herein compare the volumetric capacitances of in-plane- and out-of-plane-structured devices with reduced multi-layer graphene oxide films as electrodes. The in-plane-structured device exhibits a capacitance 2.5 times higher (i.e., $327F\;cm^{-3}$) than that of the out-of-plane-structured device, in addition to an energy density of $11.4mWh\;cm^{-3}$, which is higher than that of lithium-ion thin-film batteries and is the highest among in-plane-structured ultra-small graphene-based supercapacitors reported to date. Therefore, this study demonstrates the potential of in-plane-structured supercapacitors with high volumetric performances as ultra-small energy storage devices.

The analysis of effects of edge structures on the radiation pattern of a E-plane horn antenna (E 평면 혼 안테나의모서리 구조가 복사패턴에 미치는 영향 해석)

  • 박재수;최재훈
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.24-31
    • /
    • 1998
  • The far-zone magnetic field patterns of a E-plane horn antenna with various edge structures are analyzed using UTD. The ray tracing method is used to lacate the shadow boundaries, and then GO and UTD are utilized to evaluate the incident, reflected, diffracted, surface diffaracted, and the second order diffracted, diffracted-reflected, and diffracted-reflected-diffracted waves existing in each region of interest. By doing this, we analyzed the effects of flanges or caps connected on the edge of a horn antenna on the side lobe and back lobe levels. Also, the validity of this paper is proved by comparing the analytical results with those of measurement and method of moment presented in the reference.

  • PDF

New Instabilities in Accretion Flows onto Black Holes

  • MOLTENI D.;FAUCI F.;GERARDI G.;BISIKALO D.;KUZNETSOV O.;ACHARYA K.;CHAKRABARTI S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.247-249
    • /
    • 2001
  • The accretion disks are usually supposed symmetric to reflection on the Z=0 plane. Asymmetries in the flow are be ver-y small in the vicinity of the compact accretor. However their existence can have a important role in the case of subkeplerian accretion flows onto black holes. These flows lead to strong heating and even to the formation of shocks close to the centrifugal barrier. Large asymmetries are due to the development of the KH instability triggered by the small turbulences at the layer separating the incoming flow from the out coming shocked flow. The consequence of this phenomenon is the production of asymmetric outflows of matter and quasi periodic oscillations of the inner disk regions up and down the Z=0 plane.

  • PDF

Design of the microwave narrow-band waveguide bandpass filters for MDR (Microwave Digital Relay) system using the modified double E-plane structures (수정된 이중 E-평면 구조를 이용한 MDR(Microwave Digital Relay)장비용 마이크로파대 협대역 도파관형 대역통과 여파기의 설계)

  • 임재봉;박준석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.36-42
    • /
    • 1995
  • In this paper, the CAD program for designing the microwave waveguide narrow-band bandpass filters has been developed by the passband correction method with filter synthesis for the MDR(Microwave Digital Relay) system. Here, the modified double E-plane structures are employed in the filter structure which is analyzed by the variational method. Using the developed CAD program, 0.01dB equi-ripple chebyshev type 6-section bandpass filters used in the MDR system operating nationally is designed at the center frequency of 11.0GHz, fabricated with tunable type and then measured by tuning process. The experimantal results show good agreements with the theoretical results.

  • PDF

Enhancing hydrogen evolution activity of MoS2 basal plane by substitutional doping and strain engineering

  • Kim, Byeong-Hun;Lee, Byeong-Ju
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.280-284
    • /
    • 2016
  • 본 연구에서는 Density functional theory(DFT) 계산을 이용하여, $MoS_2$의 Mo와 S를 다른 원자로 치환 했을 때 $2H-MoS_2$ monolayer의 basal plane에서 HER활성을 향상시켰다. 특히 Ge와 Rh를 치환한 경우, ${\Delta}G_H$가 각각 0.03eV, 0,07eV로 최적에 가까운 HER활성이 나타났다. 다른 원자의 치환이 Fermi level 근처의 DOS(density of states)를 높여, ${\Delta}G_H$을 0에 가깝게 낮출 수 있음을 확인하였다. 또한 치환되는 원자의 농도, 그리고 strain을 변화시켜 농도와 strain의 증가에 따른 ${\Delta}G_H$ 감소를 발견했다. 이로써 각치환되는 원자마다, 치환 농도와 strain을 함께 변화시켜 ${\Delta}G_H$을 낮출 수 있었다. ${\Delta}G_H$가 0에 가까운(${\pm}{\pm}0.2eV$ 이내) 원자종류, 치환 농도, strain의 여러 조합을 찾았다.

  • PDF

A Study on the Accurate Design of E-Plane Type Bandpass Filtgers Based on the Synthesis Procedures (합성방법에 의한 E-평면형 대역통과 여파기의 정밀설계에 관한 연구)

  • Lim, Jae Bong;Lee, Choong Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.616-624
    • /
    • 1986
  • In this paper, we propose an accurate design method of E-plane type filters using the synthesis procedures and the passband correction factor. This correction factor is obtained from the actual insertion losses of the pre-designed filter at band edge frequencies. For this study a CAD program has been developed. In this program, the Fin-line structures are analyzed by the variational analysis routines. Unilateral Fin-line filters and bilateral Fin-line filters are fabricated in the X-band. Experimental results show excellent agreement with the theory.

  • PDF

HVPE growth of GaN/InGaN heterostructure on r-plane sapphire substrate (R-plane 사파이어 기판위의 GaN/InGaN 이종접합구조의 HVPE 성장)

  • Jeon, H.S.;Hwang, S.L.;Kim, K.H.;Jang, K.S.;Lee, C.H.;Yang, M.;Ahn, H.S.;Kim, S.W.;Jang, S.H.;Lee, S.M.;Park, G.H.;Koike, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 2007
  • The a-plane GaN layer on r-plane $Al_2O_3$ substrate is grown by mixed-source hydride vapor phase epitaxy (HVPE). The GaN/InGaN heterostructure is performed by selective area growth (SAG) method. The heterostructure consists of a flown over mixed-sourec are used as gallium (or indium) and nitrogen sources. The gas flow rates of HCl and $NH_3$ are maintained at 10 sccm and 500 sccm, respectively. The temperatures of GaN source zone is $650^{\circ}C$. In case of InGaN, the temperature of source zone is $900^{\circ}C$. The grown temperatures of GaN and InGaN layer are $820^{\circ}C\;and\;850^{\circ}C$, respectively. The EL (electroluminescence) peak of GaN/InGaN heterostructure is at nearly 460 nm and the FWHM (full width at half maximum) is 0.67 eV. These results are demonstrated that the heterostructure of III-nitrides on r-plane sapphire can be successfully grown by mixed-source HVPE with multi-sliding boat system.

Inversion Barriers of Methylsilole and Methylgermole Monoanions

  • Pak, Youngshang;Ko, Young Chun;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4161-4164
    • /
    • 2012
  • Density functional MO calculations for the methylsilole anion of $[C_4H_4SiMe]^-$ and methylgermole anion of $[C_4H_4SiMe]^-$ at the B3LYP (full)/6-311+$G^*$ level (GAUSSIAN 94) were carried out and characterized by frequency analysis. The ground state structure for the methylsilole anion and methylgermole anion is that the methyl group is pyramidalized with highly localized structure. The difference between the calculated $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are 9.4 and 11.5 pm, respectively. The E-Me vector forms an angle of $67.9^{\circ}$ and $78.2^{\circ}$ with the $C_4E$ plane, respectively. The optimized structures of the saddle point state for the methylsilole anion and methylgermole anion have been also found as a planar with highly delocalized structure. The optimized $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are nearly equal for both cases. The methyl group is located in the plane of $C_4E$ ring and the angle between the E-Me vector and the $C_4E$ plane for the methylsilole anion and methylgermole anion is $2.0^{\circ}$ and $2.3^{\circ}$, respectively. The energy difference between the ground state structure and the transition state structure is only 5.1 kcal $mol^{-1}$ for the methylsilole anion. However, the energy difference of the methylgermole anion is 14.9 kcal $mol^{-1}$, which is much higher than that for the corresponding methylsilole monoanion by 9.8 kcal $mol^{-1}$. Based on MO calculations, we suggest that the head-to-tail dimer compound, 4, result from [2+2] cycloaddition of silicon-carbon double bond character in the highly delocalized transition state of 1. However, the inversion barrier for the methylgermole anion is too high to dimerize.