• Title/Summary/Keyword: E-Mobility

Search Result 791, Processing Time 0.024 seconds

Traffic Modeling and Analysis for Pedestrians in Picocell Systems Using Random Walk Model (Picocell 시스템의 보행자 통화량 모델링 및 분석)

  • Lee, Ki-Dong;Chang, Kun-Nyeong;Kim, Sehun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • Traffic performance in a microcellular system is much more affected by cell dwell time and channel holding time in each cell. Cell dwell time of a call is characterized by its mobility pattern, i.e., stochastic changes of moving speed and direction. Cell dwell time provides important information for other analyses on traffic performance such as channel holding time, handover rate, and the average number of handovers per call. In the next generation mobile communication system, the cell size is expected to be much smaller than that of current one to accommodate the increase of user demand and to achieve high bandwidth utilization. As the cell size gets small, traffic performance is much more affected by variable mobility of users, especially by that of pedestrians. In previous work, analytical models are based on simple probability models. They provide sufficient accuracy in a simple second-generation cellular system. However, the role of them is becoming invalid in a picocellular environment where there are rapid change of network traffic conditions and highly random mobility of pedestrians. Unlike in previous work, we propose an improved probability model evolved from so-called Random walk model in order to mathematically formulate variable mobility of pedestrians and analyze the traffic performance. With our model, we can figure out variable characteristics of pedestrian mobility with stochastic correlation. The above-mentioned traffic performance measures are analyzed using our model.

The Effect of Task-oriented Training on Mobility Function, Postural Stability in Children with Cerebral Palsy

  • Kim, Ji-Hye;Choi, Young-Eun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 2017
  • PURPOSE: The purpose of this study is to examine how task-oriented training focused on lower extremity strengthening can affect mobility function and postural stability. METHODS: The study's subjects included 10 children with cerebral palsy: 7 girls and 3 boys between the ages of 4 and 9 whose Gross Motor Functional Classification System (GMFCS) level was I or II. Their functional mobility was gauged using the Gross Motor Function Measurement (GMFM), and their postural stability was evaluated using a force platform. Participants received task-oriented training focused on lower extremity strengthening for 5 weeks. The study used a paired t-test to investigate the difference in mobility function and postural stability of children with cerebral palsy before and after the lower extremity strengthening exercise. RESULTS: The GMFM dimensions D (standing) (p<.02) and E (walking) (p<.001) improved significantly between the pre-test and post-test. A significant increase in the posturographic center of pressure (CoP) shift and surface area of the CoP were found overall between the pre-test and post-test (p<.001). CONCLUSION: The present study provides evidence that an 8-week task-oriented training focused on strengthening the lower extremities is an effective and feasible strategy for improving the mobility function and postural stability of children with cerebral palsy.

Prediction Method of End of Charge Voltage using Battery Parameter Measurement (배터리 파라미터 측정을 이용한 충전종지전압 예측기법)

  • Kim, Ho-Yong;Wang, Yi-Pei;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • Recently, e-Mobility, which is a personal mobility device such as an electric bicycle or an electric scooter, is rapidly emerging. However, since E-Mobility has various voltage systems due to the characteristics of its products, it is essential for companies that operate them to use multiple dedicated chargers. A universal charger capable of charging batteries of various voltage systems with one charger is required to reduce the cost of purchasing and managing multiple dedicated chargers. For this, information on the EOC(End of Charge) is essential. In order to know the EOC, it is necessary to detect the internal impedance of the battery. However, the internal impedance of the battery changes according to various conditions such as SOH(State Of Health), SOC(State Of Charge), and ambient temperature. By observing the change in these parameters, the state of the battery can be diagnosed and the EOC can be predicted. In this paper, we propose an algorithm to analyze the battery's internal impedance and to predict the EOC, in order to acquire information on the EOC of the battery, which is an essential requirement of a universal charger.

Electrical and Optical Properties of Zinc Oxide Thin Films Deposited Using Atomic Layer Deposition

  • Kim, Jeong-Eun;Bae, Seung-Muk;Yang, Hee-Sun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.353-356
    • /
    • 2010
  • Zinc oxide (ZnO) thin films were deposited using atomic layer deposition. The electrical and optical properties were characterized using Hall measurements, spectroscopic ellipsometry and UV-visible spectrophotometry. The electronic concentration and the mobility were found to be critically dependent on the deposition temperature, exhibiting increased resistivity and reduced electronic mobility at low temperature. The corresponding optical properties were measured as a function of photon energy ranging from 1.5 to 5.0 eV. The simulated extinction coefficients allowed the determination of optical band gaps, i.e., ranging from 3.36 to 3.41 eV. The electronic carrier concentration appears to be related to the reduction in the corresponding band gap in ZnO thin films.

Noise Priority Route Generation and Noise Analysis for the Operation of Urban Air Mobility Considering Population Distribution (도심항공 모빌리티 운용을 위한 인구분포를 고려한 소음 우선 경로 생성 및 소음 분석)

  • So, Min-Jun;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.348-357
    • /
    • 2020
  • An important challenge in commercialization of eVTOL PAV is to reduce noise for urban air mobility (UAM) operation. Therefore, in this paper, noise priority routes were created to minimize the number of people affected by noise using aviation environmental design tool (AEDT) software and population distribution data for administrative districts, and noise analyses during operation were performed. Also, it was analyzed how much noise exposure could be reduced compared to the number of people affected by noise in the shortest route. Considering that the eVTOL PAV developers do not provide data, the analysis was conducted using a helicopter model. As a result, it was shown that the noise priority route that minimized the amount of noise exposure was more efficient than other routes.

Impacts of Radio Propagation Model on Mobile Ad-hoc Network (MANET) Performance in Group Mobility Environments

  • Yeo, In-ho;Yang, Hyo-sik;Rhee, JongMyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.62-72
    • /
    • 2010
  • As the applications for Mobile Ad-hoc NETworks (MANETs) have varied, performance analysis has become one of the main research areas. They commonly offer only simple radio propagation models that neglect obstacles of a propagation environment. The radio wave propagation model has a strong impact on the results of the simulation run. In this paper we present the new experimental results of the impacts of the various propagation models on MANETs' performance. Intensive simulations have been presented using the group mobility which models typical ad-hoc situations such as military movements or disaster recovery activities under the supervision of a group leader. Comparisons of conventional simple models with more complicated models, i.e., shadowing, Raleigh, and Ricean models, show that, in spite of the models' popularity, the free space and two-ray ground models are too optimistic in describing real ad-hoc group mobility situations.

  • PDF

Screening and broadening effects on the mobilities for p-type Si and Ge (Screening 현상 및 broadening 현상이 p형 Si과 Ge의 이동도에 미치는 효과)

  • 전상국
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.581-588
    • /
    • 1997
  • The ionization energy and degree of ionization for Si and Ge with boron doping are calculated. The hole mobilities are then calculated as a function of doping concentration using the relaxation time approximation. When the screening effect is taken into account, the reduction of ionization energy results in the increase of degree of ionization. As a result, the calculated Si mobility becomes closer to the experimental data, whereas the calculated Ge mobility is almost independent of the screening effect. The inclusion of the broadening effect in the mobility calculation overestimates the ionized impurity scattering. As compared with the experiment, the screening effect is not avoidable to calculate Si and Ge mobilities, and the broadening effect must accompany with the hopping process.

  • PDF

A Study for Performance Evaluation of Distributed Mobility Management based on Proxy Mobile IPv6 (PMIPv6기반의 분산 이동성 관리 방식의 성능 평가에 관한 연구)

  • Wie, Sunghong;Jang, Jaeshin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • Recently, due to an explosive growth of the internet traffic, the limitations of a current framework for a mobility management have been focused. The current centralized mobility management is prone to several problems and limitations: suboptimal routing, low scalability, signaling overhead, and a single point of failure. To overcome these problems and limitations, IETF is working about the distributed mobility management scheme that the centralized mobility functions of HA(Home Agents) are distributed to networks edges such as access routers. These distributions of mobility functions overcome the limitations of the centralized mobility managements and go with the trend of flat networks e.g. more simple network architecture. This paper analyzes the distributed mobility management based on Proxy Mobile IPv6 and demonstrates the performance superiority.

Predictive Factors Affected to Forced Vital Capacity in Children with Cerebral Palsy (뇌성마비 아동에서 노력성 폐활량에 영향을 미치는 요인 분석에 관한 연구)

  • Nam, Ki Seok;Lee, Hye Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.204-209
    • /
    • 2013
  • Purpose: Children with cerebral palsy generally have a high incidence of respiratory problem, resulted from poor coughing, airway clearance problem, respiratory muscle weakness, kyphoscoliosis and so forth. The purpose of this study is to investigate the possible factors that can be affected to forced vital capacity (FVC) in children with cerebral palsy. Methods: Total thirty six children with diplegic and hemiplegic cerebral palsy were recruited in this study. They were evaluated by general demographic data (i.e., age, gender, body mass index (BMI)) and variables related to respiratory functions (i.e., chest mobility, waist mobility, maximal phonation time, and maximum inspiratory/expiratory pressure (MIP/MEP)). The correlation between forced vital capacity and the rested variables were analyzed, and multiple regression with stepwise method was conducted to predict respiratory function, in terms of FVC as the dependent variable, and demographic and other respiratory variables as the independent variable. Results: FVC showed a significant correlation with waist mobility (r=0.59, p<0.01), maximal phonation time (r=0.48, p<0.05), MIP (r=0.73, p<0.01), and MEP (r=0.60, p<0.01). In addition, the multiple regression analysis model indicated that FVC could be predicted by the assessment of each waist mobility and MIP. Conclusion: These finding suggest that respiratory function is related to body size and respiratory muscle strength, and that BMI, waist mobility, and MIP can be predictable factors to affected respiratory function in term of FVC.