DOI QR코드

DOI QR Code

Noise Priority Route Generation and Noise Analysis for the Operation of Urban Air Mobility Considering Population Distribution

도심항공 모빌리티 운용을 위한 인구분포를 고려한 소음 우선 경로 생성 및 소음 분석

  • So, Min-Jun (Department of Aerospace Engineering, Sejong University) ;
  • Hwang, Ho-Yon (Department of Aerospace Engineering, Sejong University)
  • 소민준 (세종대학교 항공우주공학과) ;
  • 황호연 (세종대학교 항공우주공학과)
  • Received : 2020.09.30
  • Accepted : 2020.10.07
  • Published : 2020.10.30

Abstract

An important challenge in commercialization of eVTOL PAV is to reduce noise for urban air mobility (UAM) operation. Therefore, in this paper, noise priority routes were created to minimize the number of people affected by noise using aviation environmental design tool (AEDT) software and population distribution data for administrative districts, and noise analyses during operation were performed. Also, it was analyzed how much noise exposure could be reduced compared to the number of people affected by noise in the shortest route. Considering that the eVTOL PAV developers do not provide data, the analysis was conducted using a helicopter model. As a result, it was shown that the noise priority route that minimized the amount of noise exposure was more efficient than other routes.

eVTOL PAV의 상용화에 있어 해결해야할 중요한 과제들 중 하나는 도심항공 모빌리티 운용에 따른 소음을 감소시키는 것이다. 따라서 본 논문에서는 우리나라 수도권 행정구역별 인구 분포 데이터를 분석하여 소음에 영향을 받는 인구수가 최소화될 수 있도록 AEDT (aviation environmental design tool) 소프트웨어를 사용하여 소음 우선 경로를 생성하고, 운용 시의 소음 분석을 수행하였다. 또한, 최단 거리 경로 운영 시 소음에 영향을 받는 인구수와 비교하여 소음 우선 경로가 소음 노출을 얼마만큼 감소시킬 수 있는지 분석하였다. eVTOL PAV 개발 회사에서 소음 데이터를 제공하지 않는다는 점을 감안하여 헬리콥터 모델을 사용하여 분석을 진행하였다. 결과적으로 소음 노출량을 최소화한 소음 우선 경로가 타 경로들에 비해 더 효율적임을 증명하였다.

Keywords

References

  1. I. Terekhov, M. Niklass, N. Dzikus, and V. Gollnick, "Assessing noise effects of the urban air transportation system," in 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta: GA, pp.1-12, 2018.
  2. J. S. Park, J. S. Park, G. J. Kim, and S. K. Lee, Improvement plan for resolving capital area metropolitan transportation issues, The Korea Transport Institute, Sejong, Technical Report MP-19-05, pp. 1-285, 2019.
  3. Korean urban air mobility (K-UAM) roadmap that opens the sky of the city, Korean Government, 2020.
  4. S. G Lee, Aircraft noise evaluation criteria and measurement method improvement research, Seoul National University Environmental Noise and Vibration Research Center, Seoul, 2016.
  5. Environmental Research and Consultancy Department, Aircraft noise and annoyance: Recent findings, Civil Aviation Authority, Aviation House, Gatwick Airport South, West Sussex, RH6 0YR, CPA 1588, 2018.
  6. M. Brink, B. Schaffer, R. Pieren, J. M. Wunderli, "Conversion between noise exposure indicators Leq24h, Lday, Levening, Lnight, Ldn and Lden: Principles and practical guidance," International Journal of Hygiene and Environmental Health, Vol. 221, Issue 1, pp.54-63, 2017. https://doi.org/10.1016/j.ijheh.2017.10.003
  7. Ministry of Land, Infrastructure and Transport, Increasing traffic congestion in the last 3 years ... taking an average of 1 hour and 30 minutes to commute in the metropolitan area [Internet]. Available: https://blog.naver.com/mltmkr/221276370347
  8. J. Y. Yun, B. S Lee, H. Y. Hwang, "Noise analysis for the operation of the eVTOL PAV using AEDT (aviation environmental design tool)," Journal of Advanced Navigation Technology, Vol. 23, No. 4, pp.265-272, 2019.
  9. J. H. Kim, D. Lim, S. G. Min, and Marvis, D., "Prediction of community noise impacts from commercialization of vertical takeoff and landing personal air vechicles," in 16th AIAA Aviation Technology, Integration, and Operations Conference, AIAA 2016-4365, Wash: DC, pp.13-17, 2016.