• Title/Summary/Keyword: E-64

Search Result 1,870, Processing Time 0.037 seconds

Prevalence of enteropathogens in the feces from diarrheic Korean native cattle in Gwangju area, Korea (광주지역 한우 분변 내 설사병 병원체 조사)

  • Koh, Ba-Ra-Da;Kim, Hyo-Jung;Oh, A-Reum;Jung, Bo-Ram;Park, Jae-Sung;Lee, Jae-Gi;Na, Ho-Myoung;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.93-112
    • /
    • 2019
  • Calf diarrhea is a common disease in young claves and is still a major cause of productivity and economic loss in livestock farms. Fecal samples from Korean native cattle (n=100) with diarrhea from 64 farms in Gwangju area, Korea from september 2017 to December 2018 were examined for shedding of important protozoan parasitic, viral and bacterial pathogens using culture, rapid test kit and PCR methods. Of 57 (89.1%) of the 64 Korean native cattle farms examined had samples infected with at least one of the investigated pathogens. Among 100 fecal samples, 88 samples were positive for at least one the twelve pathogens and 51 samples were simultaneously positive for two or more pathogens by culture and PCR assay. Bovine group A rotavirus (BRV) was the most common pathogen, found in 43/100 (43.0%) samples on 32/64 (50.0%) farms. Subsequently, kobuvirus (30.0%), pathogenic E. coli (29.0%), bovine parvovirus (17.0%), Giardia spp. (13.0%), Eimeria spp. (10.0%), Clostridium perfringens type A (8.0%), bovine torovirus (8.0%), bovine viral diarrhea virus (6.0%), bovine coronavirus (5.0%), bovine norovirus (2.0%) and Cryptosporidium spp. (2.0%) were detected. Nebovirus, kırklareli virus, bovine adenovirus, Salmonella spp. and intestinal parasites were not detected. Of the 72 calves sampled in this age group, 64 (88.9%) samples were positive for at least one enteropathogen. BRV was identified in 34/72 (47.2%) samples from 27/48 (56.3%) farms. Subsequently, pathogenic E. coli (30.6%), kobuvirus (29.2%), BPaV (22.2%), Giardia spp. (15.3%), Eimeria spp. (9.7%), BVDV (6.9%), Cl. perfringens type A (6.9%), BCoV (4.6%) and Cryptosporidium spp. (2.8%) were detected in fecal samples. A total of ninety-six strains of E. coli were isolated from one hundred fecal samples collected from Korean native cattle with diarrhea. The presence of stx1, stx2, eaeA, LT, STa, STb, ehxA, saa, F4, F5(K99), F6, F17, F18 and F41 genes in the isolates was investigated by PCR. Out of ninety-six E. coli isolates screened for specific genes, 30 strains E. coli were identified to harbor shiga toxin-producing E. coli (STEC) 7 (7.3%), enterohemorrhagic E. coli (EHEC) 8 (8.3%), enteropathogenic E. coli (EPEC) 6 (6.3%), enterotoxigenic E. coli (ETEC) 2 (2.1%) and STEC/ETEC hybrid 7 (7.3%). This study provides epidemiological estimates of the prevalence of Korean native cattle's enteropathogens in Gwangju area, Korea, which would be used for cattle farmers and veterinarians to select appropriate therapeutic method.

First Report of Ampelomyces quisqualis from Sycamore and Crape Myrtle and Its Potential as a Mycoparasite of Powdery Mildew

  • Nguyen, Thi Thuong Thuong;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.64-67
    • /
    • 2016
  • During screening fungi as potential biological control agents for plant parasitic fungi, a fungal strain, EML-FAM3, was isolated from powdery mildew leaf lesions caused by Erysiphe platani on sycamore (Platanus occidentalis L.), and another strain, EML-FAMC1, from Erysiphe australiana on crape myrtle (Lagerstroemia indica L.). Based on the morphological characteristics and phylogenetic analysis of the internal transcribed spacers (ITS1 and ITS2) and 5.8S rDNA, the strains were identified as Ampelomyces quisqualis. To our knowledge, this is the first report of new mycohosts, E. platani and E. australiana, of the mycoparasite A. quisqualis on sycamore and crape myrtle plants. The hyperparasite may represent the potential for controlling E. platani and E. australiana epidemics.

Kinetic analysis of 64Cu-NODAGA-gluco-E[c(RGDfK)]2 for a tumor angiogenesis PET tracer

  • Choi, Jae Yong;Park, Ji-Ae;Kim, Jung Young;Lee, Ji Woong;Lee, Minkyung;Shin, Un Chol;Kang, Joo Hyun;An, Gwang Il;Lee, Kyo Chul;Ryu, Young Hoon;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.108-112
    • /
    • 2016
  • Molecular imaging with the radiolabeled RGD peptides for ${\alpha}_v{\beta}_3$ integrin has been an increasing interest for tumor diagnosis and the treatment monitoring. Recently, $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ was developed for quantification of ${\alpha}_v{\beta}_3$ integrin and its biological properties was elucidated. To better understand the molecular process in vivo, we performed the kinetic analysis for the $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$. After preparation of a radiotracer, dynamic PET images were obtained in the U87MG xenograft mice for 60 min (n = 6). Binding potential values were estimated from the 3-tissue compartment model, reference Logan and simplified reference tissue model. In the early time frame (0-20 min), the liver, kidney, intestine, urinary bladder and tumor were visualized but these uptakes were diminished as time went by. The tumors showed a good contrast at 40 min after administration. $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ showed the 2-fold uptake in the tumor compared with that in the muscle. The parametric maps for binding values also provide the higher tumor-to-background contrast than the static images. A binding value obtained from the 3-tissue compartment model was comparable to other modeling methods. From these results, we conclude that $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ may be a promising PET radiotracer for the evaluation of angiogenesis.

Bactericidal Effects of Food-borne Bacteria using Chlorine Dioxide and Electrolyzed Water (이산화염소수와 전해수를 이용한 식중독균의 살균효과)

  • Lee, Hye-Rin;Kim, Su-Jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.232-237
    • /
    • 2022
  • The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.

Charging System for E-Mobile (E- 모바일용 충전 시스템)

  • Park, Seong-Mi;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.62-64
    • /
    • 2019
  • 최근 전기 자전거 등 다양한 E-모바일 사용이 급속히 증대되고 있다. 이러한 E-모바일과 같은 이동이 자유로운 장비 전원으로는 배터리 사용이 일반화되고 있으며, 이를 충전할 수 있는 전용 장비가 필수적으로 동반되고 있다. 대부분 E-모바일 장비는 전용 충전기를 사용하고 있어 충전기를 항시 동반하고 있어야 하는 단점이 있다. 따라서 본 논문에서는 다양한 E-모바일 장비의 전원전압 및 용량에 대응할 수 있는 E-모바일 충전 시스템을 제안한다.

  • PDF