• Title/Summary/Keyword: E Field Distribution

Search Result 486, Processing Time 0.028 seconds

Wave Breaking Characteristics due to Shape and Plane Arrangement of the Submerged Breakwaters (잠제 제원 및 평면배치에 따른 쇄파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo;Huh, Jung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • The aim of this study is to examine the effects of shape and plane arrangement of submerged breakwaters on 3-D wave breaking characteristics over them. First, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D), has been validated by a comparison with Goda's equation for breaking wave heights. And then, using the numerical results, the wave breaking points over the crest of submerged breakwaters have been examined in relation to the shape and plane arrangement of submerged breakwaters. Moreover, the wave height distribution and upper flow around submerged breakwaters have been also discussed, as well as the distribution of the wave breaking points over the beach.

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF

A Study on Effect of Beachface Gradient on 3-D Currents around the Open Inlet of Submerged Breakwaters (해빈경사에 따른 잠제 개구부의 3차원적인 흐름특성에 관한 연구)

  • Lee, Woo-Dong;Hur, Dong-Soo;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • The aim of this study was to survey the effects of the beachface gradient on 3-D currents around the open inlets of submerged breakwaters. First, the numerical model was validated by a comparison with existing experimental data. This model is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve?Structure?Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D). Using the numerical results of this model, the 3-D currents around the open inlets of submerged breakwaters were examined in relation to the beachface gradient. Moreover, the wave height distribution and mean flow around them are also discussed, as well as the distribution of the wave breaking points over the crest.

Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition (정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

The Analysis of Water Tree Degradations in Underground Distribution Cables Using Image Measurement (가교폴리에틸렌 지중케이블에서 화상계측을 이용한 수트리 열화현상 분석)

  • Kim, Duck-keun;Lim, Jang-Seob;Lee, Jin;Lee, Joon-Ung;Kim, Tae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.19-23
    • /
    • 1998
  • Water tree degradations have been considered as one of the most important causes of failure in underground distribution cables with polymeric insulation. Water tree growth is a preliminary step in the sequence of electrical tree initiation and electrical breakdown of the insulation. In this paper, needle electrode is made use of the etching methods and the pellet type specimen is made to observe the water tree in succession. In previous methods are able to observe the tree degradations without cutting and dyeing. The water tree image is recorded on VTR with CCD camera. The tree length of X, Y axis direction and aging area(treeing area) are calculated with image measurement. As a result of this study, water tree is observed by non-destructive method. Electrical tree is initiated from needle electrode tip only but water tree is initiated from total area of water electrode. Electrical tree owing to water treeing is initiated at low electric field and grown with discontinuously. Namely, water tree is shown up a different characteristics of tree growth.

  • PDF

Investigation on the Safety of TTX in Strong Cross wind (강한 측풍에 대한 한국형 고속 틸팅 열차의 안전성 고찰)

  • Kim, Duck-Young;Yun, Su-Hwan;Ha, Jong-Soo;Rho, Joo-Hyun;Kwon, Hyeok-Bin;Ko, Tae-Hwan;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.271-277
    • /
    • 2007
  • The Korean Tilting Train eXpress (TTX) development program is in progress for the purpose of running speed or passenger's comfort improvement at the curved track. However, the speed up and light weight of train make poor the dynamic safety of the TTX in strong cross wind. In this paper, 3-dimensional numerical analysis on the flow field around the TTX under strong cross wind is performed for each operating condition, such as the train speed, cross wind speed, tilting/nontilting condition, and so on. Due to the strong cross wind, the pressure distribution around the train becomes asymmetric, especially at the leading car. Asymmetrical pressure distribution causes the side force and strong unstability. The side force on the train is proportional to the train speed and cross wind speed. Based on the numerical results, the overturning coefficients are predicted for investigation of the train stability, and all of them are less than the critical value, 0.9. The results in this study would be a good data for providing importance to judgement of cross wind safety of TTX.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

Blockchain Technology for Sustainable Supply Chains: A Bibliometric Study

  • Javier RAMIREZ;Girlesa GALLEGO;William NIEBLES-NU N EZ;Johny Garcia TIRADO
    • Journal of Distribution Science
    • /
    • v.21 no.6
    • /
    • pp.119-129
    • /
    • 2023
  • Purpose: The study is developed in order to describe the trends of scientific production of blockchain technologies for sustainability within the supply chains. Research design, data and methodology: This study is developed from the documentary field from the application of bibliometric techniques to analyze the trends of scientific production indexed in the Scopus database, for which processing is carried out in the R and VOS Viewer software. Results: The results show a total of 461 documents, of which 58% of the articles, 17% are conference articles and the remaining 25% are made up of other formats. Conclusions: 78% of the articles are concentrated in the years 2020, 2021 and 2022. India, United Kingdom, China, United States and Italy are the countries where 70% of all the publications were published. 23% of the articles have been published in four journals: Sustainability (Switzerland), Journal of Cleaner Production, Computers and Industrial Engineering and Business Strategy and the Environment. Sarkis, J. is the author with the most published articles with fifteen publications and, finally, 13% of the total publications were concentrated in: Uttaranchal University, Yasar University, Malaviya National Institute of Technology, Centro Di Ricerca Ingegneria e Trasformazioni Agroalimentari and University of Hong Kong.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li;Songyu Liu;Cuiwei Fu
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.