• Title/Summary/Keyword: Dynamics modeling

Search Result 1,416, Processing Time 0.03 seconds

Hybrid Control for the Platoon Maneuvers with Lane Change

  • Jeon, Seong-Min;Park, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.160.4-160
    • /
    • 2001
  • Many physical systems today are modeled by interacting continuous and discrete states that influence the dynamic behavior. Hybrid system models, suitable for describing the essential dynamics of a fairly large class of physical systems in control engineering applications, contain both continuous dynamics and discrete dynamics. We discuss the design of efficient hybrid controllers for the platoon maneuvers on an AHS. For the modeling of a hybrid system including the merge and split operations, we introduce the safety distance policy for the merge and split operations. Then, the platoon system will be modeled by a hybrid system. In addition, the hybrid controller for the proposed merge and split operation models will be presented. Finally, we will demonstrate our scenarios ...

  • PDF

The Evolution of Korean Information Infrastructure and Its Future Direction: A System Dynamics Model

  • Hyun, Tchang-Hee;Kim, Dong-Hwan
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • The recent technological and industrial revolution dictates a new approach in constructing Korean Information Infrastructure. Lacking past data on the newly emerging markets, econometrics methodologies cannot accurately forecast future path of advanced networks, let alone dynamic impacts of public policies. In this paper, we have built a system dynamics model of the Korean Information Infrastructure and simulated diverse policy measures including market integration and government initiative in investment for experimenting their effectiveness. The most counterintuitive result of our research is that the market integration policy will facilitate CATV networks at an early stage until the year 2010, but will result in a diminished market size in the long run. With the system dynamics approach, we can enhance our understanding of the complex policy systems and get valuable insights through learning by modeling and simulation.

  • PDF

AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE (2엽형 수직축 풍력발전기의 유동해석 및 실험 비교)

  • Hwang, M.H.;Kim, D.H.;Lee, J.W.;Oh, M.W.;Kim, M.H.;Ryu, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Hydraulic System Modeling far Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템을 위한 유압시스템의 동적 모델링)

  • 허건수;임훈기;서문석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.282-287
    • /
    • 2003
  • DTTS(Dynamic Track Tensioning System) system requires robust control performance for the various maneuvering tasks. However, it is very difficult to tune the controller gains in experiments. In this paper, the hydraulic unit is modeled and constructed into the DTTS control module in Matlab/Simulink The control module is interfaced to the vehicle dynamics module so that the control performance of the DTTS system can be evaluated in simulations. The dynamics data and control input data are exchanged between two modules at each control time-step. The gains in the fuzzy-logic controller are varied and the control performance is evaluated in simulations. The proposed simulation tool can be very useful for the gain tuning of track tension controller in bucked vehicles

  • PDF

Fatigue modeling of chopped strand mat/epoxy composites

  • Shokrieh, M.M.;Esmkhania, M.;Taheri-Behrooz, F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.231-240
    • /
    • 2014
  • In the present research, fatigue behavior of chopped strand mat/epoxy composites has been studied with two different techniques. First, the normalized stiffness degradation approach as a well-known model for unidirectional and laminated composites was utilized to predict the fatigue behavior of chopped strand mat/epoxy composites. Then, the capability of the fatigue damage accumulation model for chopped strand mat/epoxy composites was investigated. A series of tests has been performed at different stress levels to evaluate both models with the obtained results. The results of evaluation indicate a better correlation of the normalized stiffness degradation technique with experimental results in comparison with the fatigue damage accumulation model.

Modeling of the Maglev Vehicle Running over an elevated Guideway Using Flexible Multi-body Dynamics Based on the Model Superposition Method (모드중첩법을 이용한 자기부상열차/유연궤도 동적 모델링 연구)

  • Han, Hyung-Suk;Lee, Jong-Min;Kim, Young-Joong;Kim, Dong-Seong;Kim, Sook-Hee;Lee, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.229-238
    • /
    • 2006
  • In general, the Maglev vehicle is run over an elevated guideway consisting of steel or concrete structure. Since the running behavior of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluating the dynamics of both the vehicle and guideway. A new method based on flexible multibody dynamics is proposed to model the Maglew vehicle. This method combines the levitation controller, vehicle, and guideway into a coupled model To verify the method, an urban transit is analyzed using the method and discussions are carried out.

  • PDF

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.

Flexural fatigue modeling of short fibers/epoxy composites

  • Shokrieh, M.M.;Haghighatkhah, A.R.;Esmkhani, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.287-292
    • /
    • 2017
  • In the present research, an available flexural stiffness degradation model was modified and a new comprehensive model called "X-NFSD" was developed. The X-NFSD model is capable of predicting the flexural stiffness degradation of composite specimen at different states of stresses and at room temperature. The model was verified by means of different experimental data for chopped strand mat/epoxy composites under displacement controlled bending loading condition at different displacements and states of stresses. The obtained results provided by the present model are impressively in very good agreement with the experimental data and the mean value of error of 5.4% was achieved.

2D Modeling and Brake System Simulation of a Train (철도차량 2D 모델링 및 제동시스템 시뮬레이션)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.811-816
    • /
    • 2008
  • Train dynamics affects significantly safe and efficient operation of a train, especially during traction or braking period. Train dynamics is intrinsically complex due to many DOF motions in a three-dimensional space, and its behavior during the braking stage is too complex to understand and design an effective braking logic of the train. In this paper, we present a two-dimensional model with three DOF motion in a longitudinal, vertical, and pitch direction for the Hanvit 200 tilting train, which is efficient to analyze a braking performance. Furthermore, we analyze the braking logic and simulate the braking process of the Hanvit 200 tilting train using Simulink.

  • PDF

Dynamic Timed Petri Nets (동적 시간 페트리네트)

  • 김영찬;김탁곤
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.7
    • /
    • pp.891-900
    • /
    • 2002
  • Timed Petri nets are one of the most important formalisms used to specify concurrent systems, However, timed Petri nets cannot represent the dynamics of systems within the formalism explicitly. Such incomplete formalisms make the modeling very difficult because modelers should know not only the formalism itself but also its problem-specific simulation algorithm. In this paper we present a formalism which can express the dynamics of systems and an simulator.

  • PDF