• 제목/요약/키워드: Dynamics identification

검색결과 305건 처리시간 0.032초

다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인 (Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis)

  • 이창규;이인범
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.87-92
    • /
    • 2007
  • 최근 공정의 이상을 감지하고 진단하기 위한 공정 모니터링 시스템의 개발이 공정 시스템 분야에서 많은 주목을 받고 있다. 공정으로부터 얻어지는 데이터는 공정의 특성에 대한 유용한 정보를 제공하고 이는 공정의 모델링과 모니터링 그리고 제어에 사용된다. 현대의 화학 및 환경 공정은 고차원적인 특성과 변수간의 강한 상관관계와 동특성 그리고 비선형적 특성을 가지고 있어 모델 기반 접근을 통해 공정을 분석하는 것을 쉽지 않다. 이러한 모델 기반 접근의 한계를 극복하기 위해 많은 시스템 엔지니어와 연구자들이 주성분 분석법(principal component analysis, PCA) 또는 부분 최소 자승법(partial least squares, PLS)과 같은 다변량 분석을 접목한 통계 기반 접근법에 초점을 맞추고 있다. 또한 동특성, 비선형성 등과 같은 특성을 가진 공정에 적용하기 위해 많은 다변량 분석법들이 보완되었다. 여기에서는 동적 주성분 분석법(dynamic PCA)과 케노니컬 변수 분석법(canonical variate analysis)을 이용한 결측 데이터의 예측법과 공정 변수의 복원을 통한 센서 오작동의 판별법에 대해 언급해 보고자 한다.

감마 다층 신경망을 이용한 시스템 식별 (System Identification Using Gamma Multilayer Neural Network)

  • 고일환;원상철;최한고
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.238-244
    • /
    • 2008
  • 동적 신경망은 temporal 신호처리가 요구되는 여러 분야에 사용되어 왔다. 본 논문에서는 다층 신경망의 동특성을 향상시키기 위해 감마 신경망(GAM) 다루고 있다. GAM 신경망은 순방향 다층 신경망의 히든층에 감마 메모리 커널을 사용하고 있다. GAM 신경망은 선형 및 비선형 시스템 식별을 통해 평가되었으며 상대적인 성능평가를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하고 있다. 실험결과에 의하면 GAM 신경망은 학습속도와 정확도에서 더 우수하게 동작하였으며, 이러한 사실은 시스템 식별에 있어서 GAM 신경망이 기존의 다른 다층 신경망보다 더 효과적인 신경망이 될 수 있음을 보여주었다.

  • PDF

Nonlinear Identification of Electronic Brake Pedal Behavior Using Hybrid GMDH and Genetic Algorithm in Brake-By-Wire System

  • Bae, Junhyung;Lee, Seonghun;Shin, Dong-Hwan;Hong, Jaeseung;Lee, Jaeseong;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1292-1298
    • /
    • 2017
  • In this paper, we represent a nonlinear identification of electronic brake pedal behavior in the brake-by-wire (BBW) system based on hybrid group method of data handling (GMDH) and genetic algorithm (GA). A GMDH is a kind of multi-layer network with a structure that is determined through training and which can express nonlinear dynamics as a mathematical model. The GA is used in the GMDH, enabling each neuron to search for its optimal set of connections with the preceding layer. The results obtained with this hybrid approach were compared with different nonlinear system identification methods. The experimental results showed that the hybrid approach performs better than the other methods in terms of root mean square error (RMSE) and correlation coefficients. The hybrid GMDH/GA approach was effective for modeling and predicting the brake pedal system under random braking conditions.

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

Viral Metatranscriptomic Analysis to Reveal the Diversity of Viruses Infecting Satsuma Mandarin (Citrus unshiu) in Korea

  • Hae-Jun Kim;Se-Ryung Choi;In-Sook Cho;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.115-124
    • /
    • 2024
  • Citrus cultivation plays a pivotal role, making a significant contribution to global fruit production and dietary consumption. Accurate identification of viral pathogens is imperative for the effective management of plant viral disease in citrus crops. High-throughput sequencing serves as an alternative approach, enabling comprehensive pathogen identification on a large scale without requiring pre-existing information. In this study, we employed HTS to investigate viral pathogens infecting citrus in three different regions of South Korea: Jejudo (Jeju), Wando-gun (Wando), and Dangjin-si (Dangjin). The results unveiled diverse viruses and viroids that exhibited regional variations. Notably, alongside the identification of well-known citrus viruses such as satsuma dwarf virus, citrus tatter leaf virus, and citrus leaf blotch virus (CLBV), this study also uncovered several viruses and viroids previously unreported in Korean citrus. Phylogenetic analysis revealed that majority of identified viruses exhibited the closest affilations with isolates from China or Japan. However, CLBV and citrus viroid-I-LSS displayed diverse phylogenetic positions, reflecting their regional origins. This study advances our understanding of citrus virome diversity and regional dynamics through HTS, emphasizing its potential in unraveling intricate viral pathogens in agriculture. Consequently, it significantly contributes to disease management strategies, ensuring the resilience of the citrus industry.

A Disctete Model Reference Control With a Neural Network System Ldentification for an Active Four Wheel Steering System

  • 김호용;최창환
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.29-39
    • /
    • 1997
  • A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of discrete time nonlinar dynamics. The schmen employs a neural network to identify the plan systems, wher the neural network estimates the nonlinear dynamics of the plant. The algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed. Whith thd resulting identification model which contains the neural networks, the parameters of controller are adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the validity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the yaw rate overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response andl smaller side slip angle than the 2WS case.

  • PDF

Neural network을 이용한 OPR예측과 short circulation 동특성 분석 (Dynamic analysis of short circulation with OPR prediction used neural network)

  • 전준석;여영구;박시한;강홍
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2004년도 춘계학술발표논문집
    • /
    • pp.86-96
    • /
    • 2004
  • Identification of dynamics of short circulation during grade change operations in paper mills is very important for the effective plant operation. In the present study a prediction method of One Pass Retention(OPR) is proposed based on the neural network. The present method is used to analyze the dynamics of short circulation during grade change. Properties of the product paper largely depend upon the change in the OPR. In the present study the OPR is predicted from the training of the network by using grade change operation data. The results of the prediction are applied to the modeling equation to give flow rates and consistencies of short circulation.

  • PDF

상태변수 표현을 가진 동적 신경망을 이용한 비선형 시스템의 식별과 제어 (Identification and Control of Nonlinear System Using Dynamic Neural Model with State Parameter Representation)

  • 박성욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.157-160
    • /
    • 1995
  • Neural networks potentially offer a general framework for modeling and control of nonlinear systems. The conventional neural network models are a parody of biological neural structures, and have very slow learning. In order to emulate some, dynamic functions, such as learning and adaption, and to better reflect the dynamics of biological neurons, M.M.Gupta and D.H.Rao have developed a 'dynamic neural model'(DNU). Proposed neural unit model is to introduce some dynamics to the neuron transfer function, such that the neuron activity depends on internal states. Numerical examples are presented for a model system. Those case studies showed that the proposed DNU is so useful in practical sense.

  • PDF

An FNN based Adaptive Speed Controller for Servo Motor System

  • Lee, Tae-Gyoo;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.82-89
    • /
    • 1997
  • In this paper, an adaptive speed controller with an FNN(Feedforward Neural Network) is proposed for servo motor drives. Generally, the motor system has nonlinearities in friction, load disturbance and magnetic saturation. It is necessary to treat the nonlinearities for improving performance in servo control. The FNN can be applied to control and identify a nonlinear dynamical system by learning capability. In this study, at first, a robust speed controller is developed by Lyapunov stability theory. However, the control input has discontinuity which generates an inherent chattering. To solve the problem and to improve the performances, the FNN is introduced to convert the discontinuous input to continuous one in error boundary. The FNN is applied to identify the inverse dynamics of the motor and to control the motor using coordination of feedforward control combined with inverse motor dynamics identification. The proposed controller is developed for an SR motor which has highly nonlinear characteristics and it is compared with an MRAC(Model Reference Adaptive Controller). Experiments on an SR motor illustrate te validity of the proposed controller.

  • PDF

Fish Assemblage Dynamics and Community Analysis in the Han River

  • Choi, Jun-Kil
    • Animal Systematics, Evolution and Diversity
    • /
    • 제26권2호
    • /
    • pp.105-114
    • /
    • 2010
  • A study of Han River fish assemblage dynamics for 4 years was conducted. From April 2005 to August, 2008, fishes inhabiting two sites of Han River were sampled for identification. For further analysis, 40 individuals of the dominant species were sampled monthly from March 2006 to November 2008. The fish assemblage at site 1 was dominated by Zacco platypus (32.69%), while the subdominant species were Acheilognathus yamatsutae (14.4%), Acanthorhodeus gracilis (9.43%), Squalidus japonicus coreanus (6.84%), and Tridentiger brevispinis (5.18%). The most abundant species at site 2 was Korean Chub (Zacco koreanus) with relative abundance of 62.45% and followed by Pungtungia herzi (10.29%), Coreoperca herzi (8.67%), and Coreoleuciscus splendidus (6.82%) as the subdominant species. At both sites, the endemics populations show an increasing pattern during the whole survey period, while the natives were declining in the last two years.