• Title/Summary/Keyword: Dynamical downscaling

Search Result 24, Processing Time 0.038 seconds

Projection of future extreme precipitation events over Republic of Korea using a dynamical downscaling technique: Analysis on change of daily maximum precipitation (역학적 상세화 기법을 활용한 우리나라 극한 강수사상 전망: 일최대강수량 변화 분석)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1580-1584
    • /
    • 2010
  • 지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래(1971-2100, 130년)의 기후변화 시나리오 자료를 생산하였다. 미래 동아시아와 한반도지역은 기온상승에 의해 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전 계절에 걸쳐 강수량이 증가하고 토양수분, 증발산도 증가할 것으로 전망되었다. 상세화된 일(daily)강수량 자료를 일반극치(general extreme value, GEV)분석을 활용하여 20세기 동안 한반도의 일최대강수량의 공간 분포를 분석하고 미래 강수의 일최대강수량 변화를 전망하였다. 20세기 (1971-2000)에는 남해안과 경기 내륙지방에서 일최대강수량의 빈도와 평균값이 나타났다. 21세기에는 일최대강수량의 평균은 현재보다 약 10 $mmday^{-1}$, 20년 빈도 강수량은 60 $mmday^{-1}$ 정도 증가할 것이고, 남해안과 서해안과 충청내륙일부지방, $39^{\circ}N$ 이북에서 뚜렷이 나타날 것으로 전망되었다.

  • PDF

Production of Fine-resolution Agrometeorological Data Using Climate Model

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Lee, Deog-Bae;Kang, Su-Chul;Hur, Jina
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.20-27
    • /
    • 2011
  • A system for fine-resolution long-range weather forecast is introduced in this study. The system is basically consisted of a global-scale coupled general circulation model (CGCM) and Weather Research and Forecast (WRF) regional model. The system makes use of a data assimilation method in order to reduce the initial shock or drift that occurs at the beginning of coupling due to imbalance between model dynamics and observed initial condition. The long-range predictions are produced in the system based on a non-linear ensemble method. At the same time, the model bias are eliminated by estimating the difference between hindcast model climate and observation. In this research, the predictability of the forecast system is studied, and it is illustrated that the system can be effectively used for the high resolution long-term weather prediction. Also, using the system, fine-resolution climatological data has been produced with high degree of accuracy. It is proved that the production of agrometeorological variables that are not intensively observed are also possible.

  • PDF

Dynamical Downscaling Technique through Hyper-Resoltion River Routing Modeling: A Case Study of Geum River, South Korea (초고해상도 지표 수문-하도 추적 모델을 통한 역학적 상세화 기술 개발: 금강 유역 사례 연구)

  • Kam, Jonghun;Kim, Byeong-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.111-111
    • /
    • 2022
  • 우리 사회가 수자원 관리 정책 결정에 사용 가능한 수문 이상 기상 정보를 제공하기 위해서는 초고해상도 지표면 수문 모델 개발이 필수적이다. 본 연구에서는 기존 저해상도 기후 모델들의 지표 수문학적인 과정들을 개선하기 위해 초고해상도 하도 추적 모델링 기술을 통해 역학적인 상세화가 시도되었다. 100-km 격자의 VIC 모델에서 재생산된 지표 배출량과 기저 배출량을 입력 데이터로 사용하여 다양한 공간 규모의 하도 추적 모델에서 사용하여 산정된 하천유량의 신뢰도를 평가하였다. 본 연구에서는 90미터 (3 arc second), 450 미터(15 arc second), 그리고 900 미터 (30 arc second) 격자 규모의 금강 유역 하천망 지도를 사용하여 과거 장기 하천 유량 데이터(1948년-2016년)를 재생산하였다. 본 연구에서는 금강 유역 내의 지점 관측 하천 유량 데이터와 재생산된 유량 데이터의 불확실성을 평가하였다. 본 연구의 주요 결과는 보다 고해상도의 하천망 지도를 하도 추적 모델에 사용 시 산정된 하천 유량 데이터의 불확실성이 감소하는 경향을 발견하였다. 끝으로, 초고해상도 지표 수문-하도 추적 모델을 통한 상세화 기술의 한계점과 개선 방안을 논의하였다. 본 연구는 기후변화로 인한 이상 기상 또는 기후의 위험성 증가에 효율적으로 선제 대응할 수 있는 핵심 수문 기후 모델링 기술을 개발에 중요한 기여할 것이다.

  • PDF

High Resolution Probabilistic Quantitative Precipitation Forecasting in Korea

  • Oh, Jai-Ho;Kim, Ok-Yeon;Yi, Han-Se;Kim, Tae-Kuk
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.74-79
    • /
    • 2005
  • Recently, several attempts have been made to provide reasonable information on unusual severe weather phenomena such as tolerant heavy rains and very wild typhoons. Quantitative precipitation forecasts and probabilistic quantitative precipitation forecasts (QPFs and PQPFs, respectively) might be one of the most promising methodologies for early warning on the flesh floods because those diagnostic precipitation models require less computational resources than fine-mesh full-dynamics non-hydrostatic mesoscale model. The diagnostic rainfall model used in this study is the named QPM(Quantitative Precipitation Model), which calculates the rainfall by considering the effect of small-scale topography which is not treated in the mesoscale model. We examine the capability of probabilistic diagnostic rainfall model in terms of how well represented the observed several rainfall events and what is the most optimistic resolution of the mesoscale model in which diagnostic rainfall model is nested. Also, we examine the integration time to provide reasonable fine-mesh rainfall information. When we apply this QPM directly to 27 km mesh meso-scale model (called as M27-Q3), it takes about 15 min. while it takes about 87 min. to get the same resolution precipitation information with full dynamic downscaling method (called M27-9-3). The quality of precipitation forecast by M27-Q3 is quite comparable with the results of M27-9-3 with reasonable threshold value for precipitation. Based on a series of examination we may conclude that the proosed QPM has a capability to provide fine-mesh rainfall information in terms of time and accuracy compared to full dynamical fine-mesh meso-scale model.

  • PDF

Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model (WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향)

  • Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.

Projection of future hydrometeorological change scenarios over Republic of Korea using a dynamical downscaling technique (역학적 상세화 기법을 활용한 우리나라 미래 수문기상변화 시나리오 전망)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.258-262
    • /
    • 2010
  • 지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래 (1971-2100, 130년)의 기후변화 시나리오 자료를 생산하여 구축하였다. 현재 1971-2000년 기간 동안 상세화된 기온은 관측에 대해 저온 편의와 여름 강수는 건조 편의가 나타나는 계통오차가 있으나, 상세화된 자료는 한반도의 지형적 특성이 잘 반영되었고 관측의 월별, 계절별 변동성을 유사하게 모의하는 등 재분석 자료를 성공적으로 상세화한 것으로 판단된다. 미래 100년(2001-2100년)에 대해 전반기(2021-2050) 및 후반기(2070-2099)의 시나리오기후변동을 분석한 결과, 상세화된 지역별, 계절별, 연도별 기온 상승의 시 공간적 분포를 잘 보여주며, 기온상승(전반기: 동아시아지역~$1.8^{\circ}C$, 남한~$1.6^{\circ}C$, 후반기: 동아시아지역~$4.7^{\circ}C$, 남한~$4.6^{\circ}C$)에 의한 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전계절에 대해 강수량(전반기: 동아시아~10.5%, 남한~6.7%, 후반기: 동아시아~20.1%, 남한~31.9%)이 증가할 것으로 전망되었다. 수문기상 변화를 살펴보면, 미래 후반기에 남한은 $4.6^{\circ}C$가 상승하여 적설깊이는 5.3mm(-92.3%)가 감소할 것이고, 강수량의 연변동성을 크나 전체적으로 증가할 것이며, 토양수분, 증발산 또한 강수량 증가와 연관되어 증가할 것으로 전망되었다. 이렇게 ECHO-G/S SRES A2 시나리오를 기반으로 하여 역학적으로 상세화된 시나리오는 통계적으로 상세화된 시나리오 결과와 비교 검증함으로써 다중모델기법에 의해 불확실성을 제시함으로써 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Predictability of Temperature over South Korea in PNU CGCM and WRF Hindcast (PNU CGCM과 WRF를 이용한 남한 지역 기온 예측성 검증)

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Jung, Myung-Pyo;Jeong, Ha-Gyu;Kim, Young-Hyun;Kim, Eung-Sup
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.479-490
    • /
    • 2018
  • This study assesses the prediction skill of regional scale model for the mean temperature anomaly over South Korea produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. The initial and boundary conditions of WRF are derived from PNU CGCM. The hindcast period is 11 years from 2007 to 2017. The model's prediction skill of mean temperature anomaly is evaluated in terms of the temporal correlation coefficient (TCC), root mean square error (RMSE) and skill scores which are Heidke skill score (HSS), hit rate (HR), false alarm rate (FAR). The predictions of WRF and PNU CGCM are overall similar to observation (OBS). However, TCC of WRF with OBS is higher than that of PNU CGCM and the variation of mean temperature is more comparable to OBS than that of PNU CGCM. The prediction skill of WRF is higher in March and April but lower in October to December. HSS is as high as above 0.25 and HR (FAR) is as high (low) as above (below) 0.35 in 2-month lead time. According to the spatial distribution of HSS, predictability is not concentrated in a specific region but homogeneously spread throughout the whole region of South Korea.

Agro-Climatic Indices Changes over the Korean Peninsula in CO2 Doubled Climate Induced by Atmosphere-Ocean-Land-Ice Coupled General Circulation Model (대기-해양-지면-해빙 접합 대순환 모형으로 모의된 이산화탄소 배증시 한반도 농업기후지수 변화 분석)

  • Ahn, Joong-Bae;Hong, Ja-Young;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • According to IPCC 4th Assessment Report, concentration of carbon dioxide has been increasing by 30% since Industrial Revolution. Most of IPCC $CO_2$ emission scenarios estimate that the concentration will reach up to double of its present level within 100-year if the current tendency continues. The global warming has resulted in the agro-climate change over the Korean Peninsula as well. Accordingly, it is necessary to understand the future agro-climate induced by the increase of greenhouse gases in terms of the agro-climatic indices in the Korean peninsula. In this study, the future climate is simulated by an atmosphere/ocean/land surface/sea ice coupled general circulation climate model, Pusan National University Coupled General Circulation Model(hereafter, PNU CGCM), and by a regional weather prediction model, Weather Research and Forecasting Model(hereafter, WRF) for the purpose of a dynamical downscaling. The changes of the vegetable period and the crop growth period, defined as the total number of days of a year exceeding daily mean temperature of 5 and 10, respectively, have been analyzed. Our results estimate that the beginning date of vegetable and crop growth periods get earlier by 3.7 and 17 days, respectively, in spring under the $CO_2$-doubled climate. In most of the Korean peninsula, the predicted frost days in spring decrease by 10 days. Climatic production index (CPI), which closely represent the productivity of rice, tends to increase in the double $CO_2$ climate. Thus, it is suggested that the future $CO_2$ doubled climate might be favorable for crops due to the decrease of frost days in spring, and increased temperature and insolation during the heading date as we expect from the increased CPI.

1-month Prediction on Rice Harvest Date in South Korea Based on Dynamically Downscaled Temperature (역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측)

  • Jina Hur;Eun-Soon Im;Subin Ha;Yong-Seok Kim;Eung-Sup Kim;Joonlee Lee;Sera Jo;Kyo-Moon Shim;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • This study predicted rice harvest date in South Korea using 11-year (2012-2022) hindcasts based on dynamically downscaled 2m air temperature at subseasonal (1-month lead) timescale. To obtain high (5 km) resolution meteorological information over South Korea, global prediction obtained from the NOAA Climate Forecast System (CFSv2) is dynamically downscaled using the Weather Research and Forecasting (WRF) double-nested modeling system. To estimate rice harvest date, the growing degree days (GDD) is used, which accumulated the daily temperature from the seeding date (1 Jan.) to the reference temperature (1400℃ + 55 days) for harvest. In terms of the maximum (minimum) temperatures, the hindcasts tends to have a cold bias of about 1. 2℃ (0. 1℃) for the rice growth period (May to October) compared to the observation. The harvest date derived from hindcasts (DOY 289) well simulates one from observation (DOY 280), despite a margin of 9 days. The study shows the possibility of obtaining the detailed predictive information for rice harvest date over South Korea based on the dynamical downscaling method.

Evaluation of Long-Term Seasonal Predictability of Heatwave over South Korea Using PNU CGCM-WRF Chain (PNU CGCM-WRF Chain을 이용한 남한 지역 폭염 장기 계절 예측성 평가)

  • Kim, Young-Hyun;Kim, Eung-Sup;Choi, Myeong-Ju;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.671-687
    • /
    • 2019
  • This study evaluates the long-term seasonal predictability of summer (June, July and August) heatwaves over South Korea using 30-year (1989~2018) Hindcast data of the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. Heatwave indices such as Number of Heatwave days (HWD), Heatwave Intensity (HWI) and Heatwave Warning (HWW) are used to explore the long-term seasonal predictability of heatwaves. The prediction skills for HWD, HWI, and HWW are evaluated in terms of the Temporal Correlation Coefficient (TCC), Root Mean Square Error (RMSE) and Skill Scores such as Heidke Skill Score (HSS) and Hit Rate (HR). The spatial distributions of daily maximum temperature simulated by WRF are similar overall to those simulated by NCEP-R2 and PNU CGCM. The WRF tends to underestimate the daily maximum temperature than observation because the lateral boundary condition of WRF is PNU CGCM. According to TCC, RMSE and Skill Score, the predictability of daily maximum temperature is higher in the predictions that start from the February and April initial condition. However, the PNU CGCM-WRF chain tends to overestimate HWD, HWI and HWW compared to observations. The TCCs for heatwave indices range from 0.02 to 0.31. The RMSE, HR and HSS values are in the range of 7.73 to 8.73, 0.01 to 0.09 and 0.34 to 0.39, respectively. In general, the prediction skill of the PNU CGCM-WRF chain for heatwave indices is highest in the predictions that start from the February and April initial condition and is lower in the predictions that start from January and March. According to TCC, RMSE and Skill Score, the predictability is more influenced by lead time than by the effects of topography and/or terrain feature because both HSS and HR varies in different leads over the whole region of South Korea.