DOI QR코드

DOI QR Code

Predictability of Temperature over South Korea in PNU CGCM and WRF Hindcast

PNU CGCM과 WRF를 이용한 남한 지역 기온 예측성 검증

  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Shim, Kyo-Moon (National Academy of Agricultural Science, RDA) ;
  • Jung, Myung-Pyo (National Academy of Agricultural Science, RDA) ;
  • Jeong, Ha-Gyu (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Young-Hyun (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Eung-Sup (Division of Earth Environmental System, Pusan National University)
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 심교문 (농촌진흥청 국립농업과학원) ;
  • 정명표 (농촌진흥청 국립농업과학원) ;
  • 정하규 (부산대학교 지구환경시스템학부) ;
  • 김영현 (부산대학교 지구환경시스템학부) ;
  • 김응섭 (부산대학교 지구환경시스템학부)
  • Received : 2018.08.17
  • Accepted : 2018.09.19
  • Published : 2018.12.31

Abstract

This study assesses the prediction skill of regional scale model for the mean temperature anomaly over South Korea produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. The initial and boundary conditions of WRF are derived from PNU CGCM. The hindcast period is 11 years from 2007 to 2017. The model's prediction skill of mean temperature anomaly is evaluated in terms of the temporal correlation coefficient (TCC), root mean square error (RMSE) and skill scores which are Heidke skill score (HSS), hit rate (HR), false alarm rate (FAR). The predictions of WRF and PNU CGCM are overall similar to observation (OBS). However, TCC of WRF with OBS is higher than that of PNU CGCM and the variation of mean temperature is more comparable to OBS than that of PNU CGCM. The prediction skill of WRF is higher in March and April but lower in October to December. HSS is as high as above 0.25 and HR (FAR) is as high (low) as above (below) 0.35 in 2-month lead time. According to the spatial distribution of HSS, predictability is not concentrated in a specific region but homogeneously spread throughout the whole region of South Korea.

Keywords

KSHHDL_2018_v28n4_479_f0001.png 이미지

Fig. 1. The topography heights (in meters) of the WRF domain and locations of ASOS (bigger dots) and AWS (smaller dots) in South Korea.

KSHHDL_2018_v28n4_479_f0002.png 이미지

Fig. 2. Lead-times in 5-month lead hindcast experiment. Left column indicates initialized month and top line indicates predicted month. Lead2~4 (dark-gray shaded) are dynamically downscaled by WRF.

KSHHDL_2018_v28n4_479_f0003.png 이미지

Fig. 3. Spatial distribution of mean temperature (℃) derived from NCEP-R2 (upper), PNU CGCM (middle) and WRF (bottom) in the WRF domain for the period of hindcast (2007~2017).

KSHHDL_2018_v28n4_479_f0004.png 이미지

Fig. 4. Taylor Diagram of surface temperature (℃) for the period of hindcast (2007~2017) during (a) MAM, (b) JJA, (c) SON and (d) DJF for 2~4 month lead-times.

KSHHDL_2018_v28n4_479_f0005.png 이미지

Fig. 5. The (a) temporal correlation coefficient (TCC) and (b) root mean squared error (RMSE) of WRF prediction result. The upper x-axis indicates initialized month, lower x-axis indicates predicted month. Each line indicates prediction from lead-time 2 to lead-time 4 of initialized month. Filled (open) circle of (a) TCC indicates the values that are statistically significant at the 95% (90%) confidence level.

KSHHDL_2018_v28n4_479_f0006.png 이미지

Fig. 6. Same as Fig. 5 but for (a) Heidke Skill Score (HSS), (b) Hit Rate (HR) and (c) False Alarm Rate (FAR).

KSHHDL_2018_v28n4_479_f0007.png 이미지

Fig. 7. Spatial distribution of Heidke Skill Score (HSS) for surface temperature in March (top), April (middle) and May (bottom). The values at the top right of each figure are mean HSS.

Table 1. Description of PNU-CGCM.

KSHHDL_2018_v28n4_479_t0001.png 이미지

Table 2. WRF configuration used in this study.

KSHHDL_2018_v28n4_479_t0002.png 이미지

References

  1. Ahn, J.-B., and J. A. Lee, 2001: Numerical study on the role of sea-ice using ocean general circulation model. J. Korean Soc. Oceanogr., 6, 225-233 (in Korean with English abstract).
  2. Ahn, J.-B., and J. Lee, 2015: Comparative study on the seasonal predictability dependency of boreal winter 2 m temperature and sea surface temperature on CGCM initial conditions. Atmosphere, 25, 353-366, doi:10.14191/Atmos.2015.25.2.353 (in Korean with English abstract).
  3. Ahn, J.-B., S.-B. Lee, and S.-B. Ryoo, 2012: Development of 12-month ensemble prediction system using PNU CGCM V1.1. Atmosphere, 22, 455-464, doi:10.14191/Atmos.2012.22.4.455 (in Korean with English abstract).
  4. Ahn, J.-B., Y.-W. Choi, S. Jo, and J.-Y. Hong, 2014: Projection of 21st century climate over Korean Peninsula: temperature and precipitation simulated by WRFV3.4 based on RCP4.5 and 8.5 scenarios. Atmosphere, 24, 541-554, doi:10.14191/Atmos.2014.24.4.541 (in Korean with English abstract).
  5. Ahn, J.-B., J.-Y. Hong, and K.-M. Shim, 2016a: Agro-climate changes over Northeast Asia in RCP scenarios simulated by WRF. Int. J. Climatol., 36, 1278-1290, doi:10.1002/joc.4423.
  6. Ahn, J.-B., and Coauthors, 2016b: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pacific J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.
  7. Bonan, G. B., 1998: The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model. J. Climate, 11, 1307-1326. https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  8. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  9. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  10. Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104, doi:10.1007/s13143-014-0029-2.
  11. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  12. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  13. Hur, J., and J.-B. Ahn, 2017: Assessment and prediction of the first-flowering dates for the major fruit trees in Korea using a multi-RCM ensemble. Int. J. Climatol., 37, 1603-1618, doi:10.1002/joc.4800.
  14. Im, E.-S., J.-B. Ahn, A. R. Remedio, and W.-T. Kwon, 2008: Sensitivity of the regional climate of East/ Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: Focus on the Korean peninsula. Int. J. Climatol., 28, 1861-1877. https://doi.org/10.1002/joc.1664
  15. Im, E.-S., J.-B. Ahn, and S.-R. Jo, 2015: Regional climate projection over South Korea simulated by the Had- GEM2-AO and WRF model chain under RCP emission scenarios. Clim. Res., 63, 249-266, doi:10.3354/cr01292.
  16. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on multi-RCM ensemble projections, J. Geophys. Res., 122, 11444-11461, doi:10.1002/2017JD026731.
  17. IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press, 1535 pp.
  18. Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337, doi:10.14191/Atmos.2015.25.2.323 (in Korean with English abstract).
  19. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  20. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  21. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note, 152 pp.
  22. Kim, H. J., and J. B. Ahn, 2015: Improvement in prediction of the arctic oscillation with a realistic ocean initial condition in a CGCM. Climate Dyn., 28, 8951-8967, doi:10.1175/JCLI-D-14-00457.1.
  23. Kim, M.-H., H.-S. Kang, Y.-H. Byun, S. Park, and W.-T. Kwon, 2011: Construction of the regional prediction system using a regional climate model and validation of its wintertime forecast. Atmosphere, 21, 17-33 (in Korean with English abstract).
  24. KMA, 2012: The Climate Atlas of Korea. Korea Meteoro logical Administration, 174 pp (in Korean).
  25. Lee, D.-K., D.-H. Cha, C.-S. Jin, and S.-J. Choi, 2013: A regional climate change simulation over East Asia. Asia-Pac. J. Atmos. Sci., 49, 655-664, doi:10.1007/s13143-013-0058-2.
  26. Lee, D., and Coauthors, 2017: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dyn., 49, 4121-4139, doi:10.1007/s00382-017-3566-4.
  27. Lee, J.-W., and S.-Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol., 117, 667-677. https://doi.org/10.1007/s00704-013-1034-6
  28. Lee, J.-W., and S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Climate Dyn, 42, 733-747, doi:10.1007/s00382-013-1841-6.
  29. Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-H. Byun, and C. H. Cho, 2016: Verification and comparison of forecast skill between Global seasonal forecasting system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos.2016.26.1.059.
  30. Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 1173-1188, doi:10.1007/s00382-010-0832-0.
  31. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084, doi: 10.1002/qj.2396
  32. Meehl, G. A., and W. M. Washington, 1995: Cloud albedo feedback and the super greenhouse effect in a global coupled GCM. Climate Dyn., 11, 399-411. https://doi.org/10.1007/BF00209514
  33. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  34. Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA 08542, 708 pp.
  35. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857-861. https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  36. Ratnam, J. V., T. Doi, and S. K. Behera, 2017: Dynamical downscaling of SINTEX-F2v CGCM seasonal retrospective austral summer forecasts over Australia. J. Climate, 30, 3219-3235, doi:10.1175/JCLI-D-16-0585.1.
  37. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 125 pp.
  38. Sun, J., and J. B. Ahn, 2011: A GCM-based forecasting model for the landfall of tropical cyclones in China. Adv. Atmos. Sci., 28, 1049-1055. https://doi.org/10.1007/s00376-011-0122-8
  39. Sun, J., and J. B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342-1353, doi:10.1002/joc.4060.
  40. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192. https://doi.org/10.1029/2000JD900719
  41. Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: assessment of the APCC/Cli-PAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-117. https://doi.org/10.1007/s00382-008-0460-0
  42. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.