• 제목/요약/키워드: Dynamic-elastic Deformation

검색결과 247건 처리시간 0.022초

Spherically symmetric transient responses of functionally graded magneto-electro-elastic hollow sphere

  • Wang, H.M.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.525-542
    • /
    • 2006
  • On the basis of equilibrium equations for static electric and magnetic fields, two unknown functions related to electric and magnetic fields were firstly introduced to rewrite the governing equations, boundary conditions and initial conditions for mechanical field. Then by introducing a dependent variable and a special function satisfying the inhomogeneous mechanical boundary conditions, the governing equation for a new variable with homogeneous mechanical boundary conditions is obtained. By using the separation of variables technique as well as the electric and magnetic boundary conditions, the dynamic problem of a functionally graded magneto-electro-elastic hollow sphere under spherically symmetric deformation is transformed to two Volterra integral equations of the second kind about two unknown functions of time. Cubic Hermite polynomials are adopted to approximate the two undetermined functions at each time subinterval and the recursive formula for solving the integral equations is derived. Transient responses of displacements, stresses, electric and magnetic potentials are completely determined at the end. Numerical results are presented and discussed.

Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.61-77
    • /
    • 2021
  • The porosity of functionally graded materials (FGM) can affect the static and dynamic behavior of plates, which is important to take this aspect into account when analyzing such structures. The present work aims to study the effect of the distribution shape of porosity on the free vibration response of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is expanded to study the influence of the distribution shape of porosity on the free vibration behavior of FG plates. The findings showed that the distribution shape of porosity significantly influences the free vibration behavior of thick rectangular FG plates for small values of Winkler-Pasternak elastic foundation parameters.

Dynamic analysis of viscoelastic FGM shells with porosities on elastic foundation

  • Mehmet Halil Calim;Omer Faruk Capar;Mehmet Bugra Ozbey;Yavuz Cetin Cuma
    • Geomechanics and Engineering
    • /
    • 제39권1호
    • /
    • pp.55-72
    • /
    • 2024
  • This study investigates free and damped vibration behaviours of porous functionally graded shells supported by Winkler-Pasternak foundation, considering different geometries. Utilizing a higher-order shear deformation theory, the displacement field is determined. The equations of motion are formulated using Hamilton's principle, and the solutions are obtained Navier's method employing double Fourier series. Parametric studies regarding the effects of porosity, material distribution, elastic foundation, shell geometry and damping are carried out. Results are given in tabular and graphical form for the free and forced vibration analyses, respectively.

平坦氷荷重을 받는 細長形 해양구조물의 動的 거동 (Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load)

  • 최경식
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • 제7권1호
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Mega-Float의 동적 응답해석에 관한 연구 (A study on the Dynamic Response Analysis of Mega-Float Offshore Structure)

  • 박성현;박석주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.161-165
    • /
    • 2001
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-float structure are now being considered for various applications such as floating airports, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Mega-Float의 동적 특성 해석 (Dynamic Characteristics Analysis of Mega-Float Offshore Structure)

  • 박성현;박석주
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2001년도 춘계 공동학술발표회 논문집
    • /
    • pp.66-70
    • /
    • 2001
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-structure are now being considered for various applications such as floating airports, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

불확실한 지반의 N값이 지중구조물의 내진성능평가에 미치는 영향 (Effect of Uncertain N-values to Seismic Performance Evaluation of Underground Structures)

  • 박지환;이태형
    • 한국재난정보학회 논문집
    • /
    • 제6권2호
    • /
    • pp.45-65
    • /
    • 2010
  • There has been tighten up the need of seismic retrofit about 31 public facilites since published "Korean Earthquake Damage Prevention Law". Therefore, seismic studies have been developed and enforced the studies. Measuring dynamic stiffness of subsurface materials influence on seismic performance evaluation to build up seismic retrofit. The soil dynamic properties for seismic performance evaluation are N-value from using SPT(standard penetration test), dynamic shear elastic modulus and dynamic deformation modulus using laboratory tests. The most unscientific element in ground dynamic properties involved uncertainties is obviously N-value using SPT. This study shows that effect of N-value included natural and artificial uncertainties to seismic performance evaluation of ground structures is not only approached probabilistic analysis using FOSM method and tornado diagram, but also review how to spread effect of seismic performance evaluation of ground structures.

다중격자 다중차원 기법을 응용한 캠과 종동물의 비정상 상태의 유막특성 연구 (Study on the Transient EHL Fluid Film for the Dynamic Contact Behaviors between Cam and Follower with Multigrid Multilevel Method)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제20권3호
    • /
    • pp.132-139
    • /
    • 2004
  • Many researches about the contacts between cam and follower have investigated EHL film thickness either without dynamic loading effect or only with curve fitting formula such as Dowson-Hamrock's, because including squeeze film effect makes it hard to obtain convergence and stability of computation. Therefore, inaccurate information about minimum film thickness without dynamic loading condition causes inappropriate design of cam profiles and wrong selection of cam and follower materials. In this work, computation tools both for kinematics and dynamics of valve train system of push-rod type and for fluid film thickness with elastic deformation on the basis of dynamic loading condition with multigrid multi-level method is developed. The computational results of minimum film thickness with the respects of both static and dynamic loading conditions are compared for the contact of flat follower over the entire cycle.

리올러지 모델을 이용한 열적 기계적 변형 거동 모사 (A Description of Thermomechanical Behavior Using a Rheological Model)

  • 이금오;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.