DOI QR코드

DOI QR Code

Dynamic analysis of viscoelastic FGM shells with porosities on elastic foundation

  • Mehmet Halil Calim (Department of Civil Engineering, Cukurova University) ;
  • Omer Faruk Capar (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Mehmet Bugra Ozbey (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Yavuz Cetin Cuma (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University)
  • Received : 2023.03.10
  • Accepted : 2024.09.09
  • Published : 2024.10.10

Abstract

This study investigates free and damped vibration behaviours of porous functionally graded shells supported by Winkler-Pasternak foundation, considering different geometries. Utilizing a higher-order shear deformation theory, the displacement field is determined. The equations of motion are formulated using Hamilton's principle, and the solutions are obtained Navier's method employing double Fourier series. Parametric studies regarding the effects of porosity, material distribution, elastic foundation, shell geometry and damping are carried out. Results are given in tabular and graphical form for the free and forced vibration analyses, respectively.

Keywords

References

  1. Ahmadi, H. (2019), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. with Comput., 35(4), 1491-1505. https://doi.org/10.1007/s00366-018-0679-2.
  2. Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened fg doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
  3. Ahmadi, H. and Foroutan, K. (2019), "Nonlinear vibration of stiffened multilayer fg cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment", Thin-Wall. Struct., 145, 106388. https://doi.org/10.1016/j.tws.2019.106388.
  4. Ahmadi, H. and Foroutan, K. (2020), "Nonlinear static and dynamic thermal buckling analysis of imperfect multilayer fg cylindrical shells with an fg porous core resting on nonlinear elastic foundation", J. Therm. Stresses, 43(5), 629-649. https://doi.org/10.1080/01495739.2020.1727802.
  5. Al-Toki, M.H.Z., Ali, H.A.K, Faleh, N.M. and Fenjan, R.M. (2022), "Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation", Geomech. Eng., 28(5), 455-461. https://doi.org/10.12989/gae.2022.28.5.455.
  6. Alimoradzadeh, M. and Akbas, S.D. (2023), "Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation", Geomech. Eng., 32(2), 125-135. https://doi.org/10.12989/gae.2023.32.2.125.
  7. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  8. Amiri, M., Loghman, A. and Arefi, M. (2022), "Thermoelastic analysis of rectangular plates with variable thickness made of FGM based on tsdt using DQ method", Geomech. Eng., 29(6), 667-681. https://doi.org/10.12989/gae.2022.29.6.667.
  9. Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos, Mater., 57(5), 609-622. https://doi.org/10.1007/s11029-021-09983-w.
  10. Avcar, M., Hadji, L. and Akan, R. (2022), "The influence of winkler-pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams", Geomech. Eng., 31(1), 99-112. https://doi.org/10.12989/gae.2022.31.1.099.
  11. Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.
  12. Bayat, M., Bayat, M., Kia, M., Ahmadi, H.R. and Pakar, I. (2018), "Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach", Geomech. Eng., 16(4), 355-361. https://doi.org/10.12989/gae.2018.16.4.355.
  13. Benaberrahmane, I., Bentoucef, S., Sekkal, M., Mekerbi, M., Bouiadjra, R.B., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Investigating of free vibration behavior of bidirectional fg beams resting on variable elastic foundation", Geomech. Eng., 25(5), 383-394. https://doi.org/10.12989/gae.2021.25.5.383.
  14. Bennedjadi, M., Aldosari, S.M., Chikh, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2023), "Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions", Geomech. Eng., 32(2), 159-77. https://doi.org/10.12989/gae.2023.32.2.159.
  15. Calim, F.F. (2003), "Dynamic analysis of viscoelastic, anisotropic curved spatial rod systems", Ph. D. Dissertation; Cukurova University, Adana, Turkey (In Turkish)
  16. Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation", Struct. Eng. Mech., 59(4), 761-774. https://doi.org/10.12989/sem.2016.59.4.761.
  17. Calim, F.F. and Cuma, Y.C. (2022), "Vibration analysis of nonuniform hyperboloidal and barrel helices made of functionally graded material", Mech. Based Des. Struct. Mach., 50(11), 3781-3795. https://doi.org/10.1080/15397734.2020.1822181.
  18. Calim, F.F. and Cuma, Y.C. (2023), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Based Des. Struct. Mach., 51(7), 3620-3631. https://doi.org/10.1080/15397734.2021.1931307.
  19. Cheng, Y., Fu, L., Hou, W., Carcione, J.M., Deng, W. and Wang, Z. (2024), "Thermo-poroelastic AVO modeling of Olkaria geothermal reservoirs", Geoenergy Sci. Eng., 241, 213166. https://doi.org/10.1016/j.geoen.2024.213166.
  20. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of fg sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  21. Cuma, Y.C. and Calim, F.F. (2021), "Transient response of functionally graded non-uniform cylindrical helical rods", Steel Compos. Struct., 40(4), 571-580. https://doi.org/10.12989/scs.2021.40.4.571.
  22. Cuma, Y.C. and Calim, F.F. (2022), "Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area", Mech. Time-Dependent Mater., 26(4), 923-937. https://doi.org/10.1007/s11043-021-09520-1.
  23. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of fg porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  24. Dang, X.H., Nguyen, V.L., Tran, M.T. and Nguyen Thi, B.P. (2022), "Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions", Iranian J. Sci. Technol. T. Mech. Eng., 46(1), 167-183. https://doi.org/10.1007/s40997-020-00413-1.
  25. Duc, N.D. and Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. - A/Solids 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002.
  26. Eratli, N., Argeso, H., Calim, F.F., Temel, B. and Omurtag, M.H. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM", J. Sound Vib., 333(16), 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017.
  27. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 8(6), 925-933. https://doi.org/10.1007/s42417-020-00203-8.
  28. Foroutan, K. and Ahmadi, H. (2020), "Nonlinear static and dynamic buckling analyses of imperfect fgp cylindrical shells resting on nonlinear elastic foundation under axial compression", Int. J. Struct. Stab. Dynam., 20(07), 2050074. https://doi.org/10.1142/S0219455420500741.
  29. Fu, T., Wu, X., Xiao, Z., Chen, Z. and Li, B. (2021a), "Analysis of vibration characteristics of fgm sandwich joined conical-conical shells surrounded by elastic foundations." Thin-Walled Struct., 165, 107979. https://doi.org/10.1016/j.tws.2021.107979.
  30. Fu, T., Wu, X., Xiao, Z. and Chen, Z. (2020), "Thermoacoustic response of porous FGM cylindrical shell surround by elastic foundation subjected to nonlinear thermal loading", Thin-Walled Struct., 156, 106996. https://doi.org/10.1016/j.tws.2020.106996.
  31. Fu, T., Wu, X., Xiao, Z. and Chen, Z. (2021b), "Dynamic instability analysis of porous FGM conical shells subjected to parametric excitation in thermal environment within FSDT", Thin-Wall. Struct., 158, 107202. https://doi.org/10.1016/j.tws.2020.107202.
  32. Ghasemi, A.R. and Meskini, M. (2019), "Free vibration analysis of porous laminated rotating circular cylindrical shells", J. Vib. Control, 25(18), 2494-2508. https://doi.org/10.1177/1077546319858227.
  33. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  34. He, Q., Zhou, Y.L., Li, M., He, L. and Dai, H.L. (2023), "Nonlinear vibration analysis of CFRR sandwich doubly-curved shallow shells with a porous microcapsule coating in hygrothermal environment", Thin-Wall. Struct., 185, 110587. https://doi.org/10.1016/j.tws.2023.110587.
  35. Jouneghani, F.Z., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1252. https://doi.org/10.3390/app7121252.
  36. Khaniki, H.B. and Ghayesh, M.H. (2023), "Highly nonlinear hyperelastic shells: statics and dynamics", Int. J. Eng. Sci., 183, 103794. https://doi.org/10.1016/j.ijengsci.2022.103794.
  37. Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012a), "Static and dynamic analysis of an fgm doubly curved panel resting on the pasternak-type elastic foundation", Compos. Struct., 94(8), 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028.
  38. Kiani, Y., Shakeri, M. and Eslami, M.R. (2012b), "Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation", Acta Mechanica, 223(6) 1199-1218. https://doi.org/10.1007/s00707-012-0629-9.
  39. Kim, Y.W. (2015), "Free vibration analysis of FGM cylindrical shell partially resting on pasternak elastic foundation with an oblique edge", Compos. Part B: Eng., 70, 263-276. https://doi.org/10.1016/j.compositesb.2014.11.024.
  40. Li, H., Hao, Y.X., Zhang, W., Liu, L.T., Yang, S.W. and Wang, D.M. (2021), "Vibration analysis of porous metal foam truncated conical shells with general boundary conditions using GDQ", Compos. Struct., 269, 114036. https://doi.org/10.1016/j.compstruct.2021.114036.
  41. Li, H., Pang, F., Ren, Y., Miao, X. and Ye, K. (2019a), "Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory", Thin-Wall. Struct., 144, 106331. https://doi.org/10.1016/j.tws.2019.106331.
  42. Li, H., Pang, F., Chen, H. and Du, Y. (2019b), "Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method", Compos. Part B: Eng., 164, 249-264. https://doi.org/10.1016/j.tws.2019.106331.
  43. Liang, X., Zha, X., Yu, Y., Cao, Z., Jiang, X. and Leng, J. (2019), "Semi-Analytical vibration analysis of fgm cylindrical shells surrounded by elastic foundations in a thermal environment", Compos. Struct., 223, 110997. https://doi.org/10.1016/j.compstruct.2019.110997.
  44. Limkatanyu, S., Sae-Long, W., Damrongwiriyanupap, N., Imjai, T., Chaimahawan, P., Sukontasukkul, P., Chompoorat, T. and Hansapinyo, C. (2023), "Nonlinear shear-flexure-interaction rc frame element on winkler-pasternak foundation", Geomech. Eng., 32(1), 69-84. https://doi.org/10.12989/gae.2023.32.1.069.
  45. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Mar. Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  46. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of fgm sandwich cylindrical shells with porosities on an elastic substrate", Nonlinear Dynam., 104(2), 1007-1021. https://doi.org/10.1007/s11071-021-06358-7.
  47. Mehala, T., Belabed, Z., Tounsi, A. and Beg, O.A. (2018), "Investigation of influence of homogenization models on stability and dynamic of fgm plates on elastic foundations", Geomech. Eng., 16(3), 257-271. https://doi.org/10.12989/gae.2018.16.3.257.
  48. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed,M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583
  49. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of fg beams on variable elastic foundation: effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  50. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2022), "Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments", Mech. Based Des. Struct. Mach., 50(6), 2206-2220. https://doi.org/10.1080/15397734.2020.1771729.
  51. Nebab, M., Benguediab, S., Atmane, H.A. and Bernard, F. (2020), "A simple Quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://doi.org/10.12989/gae.2020.22.5.415.
  52. Nguyen, V.L., Tran, M.T., Nguyen, V.L. and Le, Q.H. (2021), "Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept", Arch. Mech. Eng., 5-22. https://doi.org/10.24425/ame.2020.131706.
  53. Pradyumna, S., Nanda, N. and Bandyopadhyay, J.N. (2010), "Geometrically nonlinear transient analysis of functionally graded shell panels using a higher-order finite element formulation", J. Mech. Eng. Res., 2(2) 39-51.
  54. Qin, B., Wang, Q., Zhong, R., Zhao, X. and Shuai, C. (2020), "A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: a comparative and parametric study", Int. J Mech. Sci., 187, 105896. https://doi.org/10.1016/j.ijmecsci.2020.105896.
  55. Quan, T.Q. and Duc, N.D. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stresses, 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601.
  56. Rabhi, M., Benrahou, K.H., Kaci, A., Houri, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  57. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  58. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of fg doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin-Wall. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783.
  59. Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. https://doi.org/10.1177/1077546320902340.
  60. Ramteke, P.M., Kumar, V., Sharma N. and Panda, S.K. (2022), "Geometrical nonlinear numerical frequency prediction of porous functionally graded shell panel under thermal environment", Int. J. Nonlinear Mech., 143, 104041. https://doi.org/10.1016/j.ijnonlinmec.2022.104041.
  61. Reddy, J.N. (1984), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5) 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794).
  62. Sae-Long, W., Limkatanyu, S., Hansapinyo, C., Prachasaree, W., Rungamornrat, J. and Kwon, M. (2021), "Nonlinear flexibility-based beam element on winkler-pasternak foundation", Geomech. Eng., 24(4), 371-388. https://doi.org/10.12989/gae.2021.24.4.371.
  63. Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
  64. Salehipour, H., Shahgholian-Ghahfarokhi, D., Shahsavar, A., Civalek, O. and Edalati, M. (2020), "Static deflection and free vibration analysis of functionally graded and porous cylindrical micro/nano shells based on the three-dimensional elasticity and modified couple stress theories", Mech. Based Des. Struct. Mach., 50(6), 2184-2205. https://doi.org/10.1080/15397734.2020.1775095.
  65. Sayyad, A.S. and Ghugal, Y.M. (2019), "Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory", Compos. Struct., 219, 129-146. https://doi.org/10.1016/j.compstruct.2019.03.054.
  66. Sayyad, A.S. and Ghugal, Y.M. (2021), "Static and free vibration analysis of doubly-curved functionally graded material shells", Compos. Struct., 269, 114045. https://doi.org/10.1016/j.compstruct.2021.114045.
  67. Sayyad, A.S. and Ghugal, Y.M. (2022), "A unified formulation of various shell theories for the analysis of laminated composite spherical shells", Vietnam J. Mech., 44(2), 97-116. https://doi.org/10.15625/0866-7136/15715.
  68. Sharma, N., Tiwari, P., Maiti, D.K. and Maity, D. (2021), "Free vibration analysis of functionally graded porous plate using 3-D degenerated shell element", Compos. Part C: Open Access, 6, 100208. https://doi.org/10.1016/j.jcomc.2021.100208.
  69. She, G.L. and. Li, Y.P (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-22. https://doi.org/10.12989/gae.2022.31.6.615.
  70. Shi, X., Zuo, P., Zhong, R., Guo, C. and Wang, Q. (2022) "Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method." Thin-Wall. Struct., 175, 109138. https://doi.org/10.1016/j.tws.2022.109138.
  71. Sobhani, E., Koohestani, M., Civalek, O. and Avcar, M. (2023), "Natural frequency investigation of graphene oxide powder nanocomposite cylindrical shells surrounded by winkler/pasternak/kerr elastic foundations with a focus on various boundary conditions", Eng. Anal. Bound. Elem., 149, 38-51. https://doi.org/10.1016/j.enganabound.2023.01.012.
  72. Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(2), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
  73. Sofiyev, A.H. (2010), "The buckling of FGM truncated conical shells subjected to axial compressive load and resting on winkler-pasternak foundations", Int. J. Pres. Ves. Pip., 87(12), 753-761. https://doi.org/10.1016/j.ijpvp.2010.08.012.
  74. Sun, S., Guo, C., Feng, W. and Cao, D. (2022), "Nonlinear vibration analysis of CNT-reinforced functionally graded composite cylindrical shells resting on elastic foundations", Int. J. Nonlinear Mech., 143, 104037. https://doi.org/10.1016/j.ijnonlinmec.2022.104037.
  75. Swaminathan, K., Hirannaiah, S. and Rajanna, T. (2022), "Vibration and stability characteristics of functionally graded sandwich plates with/without porosity subjected to localized edge loadings", Mech. Based Des. Struct. Mach., 1-39. https://doi.org/10.1080/15397734.2022.2038619.
  76. Temel, B. and Calim, F.F. (2003), "Forced vibration of cylindrical helical rods subjected to impulsive loads", J. Appl. Mech., 70(2), 281-291. https://doi.org/10.1115/1.1554413.
  77. Temel, B., Calim, F.F. and Tutuncu, N. (2004), "Quasi-static and dynamic response of viscoelastic helical rods", J. Sound Vib., 271(3), 921-935. https://doi.org/10.1016/S0022-460X(03)00760-0.
  78. Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016.
  79. Thang, P.T., Do, D.T.T., Nguyen, T.T., Lee, J. and Nguyen-Thoi, T. (2022), "Free vibration characteristic analysis of functionally graded shells with porosity and neutral surface effects", Ocean Eng., 255, 111377. https://doi.org/10.1016/j.oceaneng.2022.111377.
  80. Timesli, A. (2022), "Analytical modeling of buckling behavior of porous FGM cylindrical shell embedded within an elastic foundation", Gazi Univ. J. Sci., 35(1), 148-165. https://doi.org/10.35378/gujs.860783.
  81. Tran, M.T., Nguyen, V.L. and Trinh, A.T. (2017), "Static and vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners resting on Winkler-Pasternak elastic foundations", Int. J. Adv. Struct. Eng., 9, 153-164. https://doi.org/10.1007/s40091-017-0155-z
  82. Tran, T.T, Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264, 113737. https://doi.org/10.1016/j.compstruct.2021.113737.
  83. Trinh, M.C. and Kim, S.E. (2019), "A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis", Aerosp. Sci. Technol., 94, 105356. https://doi.org/10.1016/j.ast.2019.105356.
  84. Turker, H.T., Cuma, Y.C. and Calim, F.F. (2023), "An efficient approach for free vibration behaviour of non-uniform and nonhomogeneous helices", Iranian J. Sci. Tech. T. Civil Eng., 47, 1959-1970. https://doi.org/10.1007/s40996-023-01075-0.
  85. Vinh, V.P. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin-Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084.
  86. Vu, T.V., Cao, H.L., Truong, G.T. and Kim, C.S. (2023), "Buckling analysis of the porous sandwich functionally graded plates resting on Pasternak foundations by Navier solution combined with a new refined quasi-3D hyperbolic shear deformation theory", Mech. Based Des. Struct. Mach., 51(11), 6227-6253. https://doi.org/10.1080/15397734.2022.2038618.
  87. Wang, J., Wang, Y.Q. and Chai, Q. (2022), "Free vibration analysis of a spinning functionally graded spherical-cylindrical-conical shell with general boundary conditions in a thermal environment", Thin-Wall. Struct., 180, 109768. https://doi.org/10.1016/j.tws.2022.109768.
  88. Wang, Y., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  89. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  90. Wu, M., Wang, B., Ba, Z., Dai, K. and Liang, J. (2024), "Propagation attenuation of elastic waves in multi-row infinitely periodic pile barriers: A closed-form analytical solution", Eng. Struct., 315, 118480. https://doi.org/10.1016/j.engstruct.2024.118480.
  91. Xiao, H., Yan, K. and She, G. (2021), "Study on the characteristics of wave propagation in functionally graded porous square plates", Geomech. Eng., 26(6), 607-615. https://doi.org/10.12989/gae.2021.26.6.607.
  92. Younsi, A., Tounsi, A., Zaoui, F.Z. and Bousahla, A.A. (2018), "Novel Quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  93. Zannon, M., Abu-Rqayiq, A. and Al-bdour, A. (2020), "Free vibration frequency of thick FGM spherical shells based on a third-order shear deformation theory", Eur. J. Pure App., Math., 13(4), 766-778. https://doi.org/10.29020/nybg.ejpam.v13i4.3826.
  94. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  95. Zenkour, A.M., Allam, M.N.M., Shaker, M.O. and Radwan, A.F. (2011), "On the simple and mixed first-order theories for plates resting on elastic foundations", Acta Mechanica220(1), 33-46. Compos 10.1007/s00707-011-0453-7.
  96. Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H., Dun, L., Tai, H., Yuan, X., Xiao, H., Zhu, L. and Guo, S. (2021), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
  97. Zhang, J. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.
  98. Zhang, S., Liu, L., Zhang, X., Zhou, Y. and Yang, Q. (2024), "Active vibration control for ship pipeline system based on PI-LQR state feedback", Ocean Eng., 310, 118559. https://doi.org/10.1016/j.oceaneng.2024.118559.
  99. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions", Compos. Part B: Eng., 156, 406-424. https://doi.org/10.1016/j.compositesb.2018.08.115.
  100. Zhu, C., Fang, X. and Nie, G. (2021), "Nonlinear free and forced vibration of porous piezoelectric doubly-curved shells based on NUEF model", Thin-Wall. Struct., 163, 107678. https://doi.org/10.1016/j.tws.2021.107678.
  101. Zouatnia, N., Hadji, L. and Kassoul, A. (2018), "An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions", Geomech. Eng., 16(1), 1-9. https://doi.org/10.12989/gae.2018.16.1.001.