• Title/Summary/Keyword: Dynamic-elastic Deformation

Search Result 243, Processing Time 0.025 seconds

The Modeling and Adaptive fuzzy control of Electrostrictive Polymer for endoscopic microcapsule (체내이동형 마이크로 캡술형 내시경 로봇을 위한 Electrostrictive Polymer의 모델링 및 Adaptive fuzzy 알고리듬 개발)

  • Hwang, Kyo-Il;Kim, Hun-Mo;Choi, Hyouk-Yeol;Nam, Jae-Do;Jeon, Jae-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.716-722
    • /
    • 2001
  • In this paper, the modeling and control of electrostrictive polymer is introduced for endoscopic microcapsule. The endoscopic microcapsule works in the body, so the material of robot must be no harmful to the body. The electrostrictive polymer satisfies this condition. The modeling and control of endoscope microcapsule must be processed. So the modeling and control of electrostrictive was processed preferentially. The electrostrictive polymer is so flexible that we considered the electrostrictive polymer as flexible membrane. The dynamic equation of flexible membrane is time variant in electrostrictive polymer. It is the reason that the elastic modulus of electrostrictive polymer is very small and changes as deformation of electrostrictive polymer. The control algorithm must overcome these characteristics. So the algorithm of adaptive fuzzy control was used to control. In this paper, we introduced the dynamic modeling and control of electrostrictive polymer. And its deformation is introduced.

  • PDF

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.

Estimation of Deformation Modulus of Basaltic Rock Masses in Northeastern and Northwestern Jeju Island (제주도 북동부 및 북서부 현무암반의 변형계수 추정)

  • Yang, Soon-Bo;Boo, Sang-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.5-15
    • /
    • 2019
  • In this study, the in situ deformation moduli, which were measured by borehole loading tests at basaltic rock masses located in the northeastern onshore and offshore and the northwestern onshore of Jeju Island, were examined in relation to RQD and RMR. The measured deformation moduli were also compared with the estimated deformation moduli from conventional empirical formulas using RQD and RMR. In addition, the measured deformation moduli were analyzed with respect to both the velocity ratio ($V_P/V_S$) and dynamic Poisson's ratio, which were obtained from the elastic wave velocities measured by velocity logging tests. As results, with only RQD, it was inappropriate to evaluate the quality of the Jeju island basaltic rock masses, which are characterized by vesicular structures, to select a measurement method of in situ deformation moduli, and to estimate the deformation moduli. On the other hand, it was desirable to evaluate the quality of the Jeju Island basaltic rock masses, and to estimate the deformation moduli by using RMR. The conventional empirical formulas using RMR overestimated the deformation moduli of the Jeju Island basaltic rock masses. There was qualitative consistency in the relation between velocity ratio and deformation moduli. To estimate appropriately the deformation moduli of the Jeju Island basaltic rock masses, empirical formulas were proposed as the function of RMR and velocity ratio, respectively.

A Study on Vibration and Noise through Finite Element Analysis of Large High Speed Press (대형 고속프레스의 유한요소해석을 통한 진동 및 소음에 대한 연구)

  • Seung-Soo Kim;Chul-Jae Jung;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.14-23
    • /
    • 2023
  • The electric vehicle market is developing rapidly around the world. Also, parts of electric vehicles require precision.In order to produce high-precision motor cores,Press equipment must also have good precision. Drive motor cores are an important technology for electric vehicles. It uses a large high-speed press to mass-produce drive motor cores. Because it's a large high-speed press, there are many reasons why the precision is not good. One of the causes is vibration and noise. Recently, as environmental demands have become stricter, regulations on noise and vibration have been strengthened. It is important for press machines to reduce vibration first for sound insulation and dust proofing. This is because the "breakthrough" phenomenon occurs in the press. Dynamic precision is the precision under the load of the press, Design considering strain and stiffness shall be made. Vibration and noise may occur due to SPM of high-speed press,And vibration and noise can cause structural deformation of the press. Structural deformation of the press can affect the precision of the product.Noise and vibration also cause problems for workers and work environments. Problems with vibration and noise occur during press processing, and vibration and noise lead to damage to the mold or defects in the product. Reliability in high-quality technology must be secured with low noise and low vibration during press processing. Modular shape and deformation energy effects were analyzed through finite element analysis. In this study, a study on vibration and noise countermeasures was conducted through finite element analysis of a large high-speed press.

A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation

  • Boukhlif, Zoulikha;Bouremana, Mohammed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Tounsi, Abdelouahed;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.503-516
    • /
    • 2019
  • This work presents a dynamic investigation of functionally graded (FG) plates resting on elastic foundation using a simple quasi-3D higher shear deformation theory (quasi-3D HSDT) in which the stretching effect is considered. The culmination of this theory is that in addition to taking into account the effect of thickness extension (${\varepsilon}_z{\neq}0$), the kinematic is defined with only 4 unknowns, which is even lower than the first order shear deformation theory (FSDT). The elastic foundation is included in the formulation using the Pasternak mathematical model. The governing equations are deduced through the Hamilton's principle. These equations are then solved via closed-type solutions of the Navier type. The fundamental frequencies are predicted by solving the eigenvalue problem. The degree of accuracy of present solutions can be shown by comparing it to the 3D solution and other closed-form solutions available in the literature.

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation (면외변형하의 이방성 띠판에 대한 동적계면균열)

  • Park, Jae-Wan;Choe, Seong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF