• Title/Summary/Keyword: Dynamic verification

검색결과 741건 처리시간 0.029초

철도궤도의 동적특성 예측 및 실험적 검증 연구 (Prediction of The Rail way Track's Vibration Behavior and Corresponding Experimental Verification)

  • 박희준;김관주;김재철;이찬우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.883-888
    • /
    • 2004
  • One of commercial rapid transits produces peculiar booming sound when passing through the slab-track tunnel. In order to analyze that tympanic membrane-pressing noise systematically, typical source-transfer path-response analysis was carried out. Considering the octave band of booming noise, work scope was confined to structure-borne noise analysis, especially the dynamic behaviour of railway tracks. Experimental modal analysis of railway tracks, composed of rail, rubber pad, sleeper, ballast, and ground were performed. The results shows that transversal bending modes of the rail are suspicious for the cause of the low band booming noise. Finite element analysis are made use of to match preceding experimental results, and plausible dynamic properties of track components are produced.

  • PDF

2축 짐벌 안정계 동특성 고찰을 통한 해석 모델링 검증에 관한 연구 (Study for verification of Analysis modeling with investigating dynamic characteristic about 2 axies gimbals system)

  • 김만달;이용덕;김성국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.180-183
    • /
    • 2005
  • 2 axis gimbals systems are extensively used in various tracking devices for attaining the system's objective. Designers are sometimes passing over the dynamic characteristics of system in vibrating condition In this paper, 2 axis gimbals systems including interface elements is modeled with finite elements. To verify this model, the finite element model is refined by using the experimental model data. The refined model is simulated with I-DEAS and MSC.NATRAN's FRF(Frequency response Function) and RRA(Random vibration Response Analysis) function to get dynamic characteristics of 2 axis gimbals system.

  • PDF

고정단 평판의 고정밀도 고유치 해석을 위한 효율적인 무요소법 개발 (Efficient Meshless Method for Accurate Eigenvalue Analysis of Clamped Plates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.653-659
    • /
    • 2015
  • A new formulation of the non-dimensional dynamic influence function method, which is a type of the meshless method, is introduced to extract highly accurate eigenvalues of clamped plates with arbitrary shape. Originally, the final system matrix equation of the method, which was introduced by the author in 1999, does not have a form of algebraic eigenvalue problem unlike FEM. As the result, the non-dimensional dynamic influence function method requires an inefficient process to extract eigenvalues. To overcome this weak point, a new approach for clamped plates is proposed in the paper and the validity and accuracy is shown in verification examples.

Correction of node mapping distortions using universal serendipity elements in dynamical problems

  • Kucukarslan, Semih;Demir, Ali
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.245-256
    • /
    • 2011
  • In this paper, the use of universal serendipity elements (USE) to eliminate node mapping distortions for dynamic problem is presented. Rectangular shaped elements for USE are being introduced by using a flexible master element with an adjustable edge node location. The shape functions of the universal serendipity formulation are used to derive the mass and damping matrices for the dynamic analyses. These matrices eliminate the node mapping distortion errors that occurs incase of the standard shape function formulations. The verification of new formulation will be tested and the errors encountered in the standard formulation will be studied for a dynamically loaded deep cantilever.

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

Practical Experience with Full-scale Performance Verification of Dynamic Vibration Absorbers installed in Tall Buildings

  • Love, J.S.;Morava, B.
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.85-92
    • /
    • 2021
  • Dynamic vibration absorbers (DVAs) in the form of tuned sloshing dampers (TSDs) and tuned mass dampers (TMDs) are commonly used to reduce the wind-induced motion of high-rise buildings. Full-scale performance of structure-DVA systems must be evaluated during the DVA commissioning process using structural monitoring data. While the random decrement technique (RDT) is sometimes employed to evaluate the DVA performance, it is shown to have no theoretical justification for application to structure-DVA systems, and to produce erroneous results. Subsequently, several practical methods with a sound theoretical basis are presented and illustrated using simulated and real-world data. By monitoring the responses of the structure and DVA simultaneously, it is possible to directly measure the effective damping of the system or perform system identification from which the DVA performance can be evaluated.

유한요소해석을 이용한 3 차원 전차선로의 동특성 분석 (Dynamic Analysis of a Three-dimensional Catenary System Using the Finite Element Method)

  • 이규호;조용현;정진태
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1306-1313
    • /
    • 2009
  • Dynamic and static behaviors of a three-dimensional catenary system for a high-speed railway are analyzed by using the finite element method. Considering tensions in the contact wire and the messenger wire, we drive the equations of motion for the catenary system. These equations are for the longitudinal, transverse, vertical and torsional motions. After establishing the weak form, the weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations, a finite element computer program is developed for the static and dynamic analyses. The static deflections of the catenary system, which are important for good contact between the pantograph and the contact line, are computed when the gravity is applied. On the other hand, we analyze the natural frequencies and the corresponding natural modes of the catenary system. The dynamic responses of the system are also investigated when applying a load to the contact line. For verification of the developed finite element program, vibrations of the catenary system are measured and they are compared to computed time responses.

4절 링크 기구의 동적 변형 해석 (II) (Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II))

  • 조선휘;박종근;주동인
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.910-923
    • /
    • 1992
  • 본 연구에서는 가장 응용 빈도가 큰 크랭크-레버 4절 기구를 제작하고 강성과 유연성 두가지 베어링을 사용하여 연결봉과 레버의 중점의 변형률을 스트레인 게이지 로 측정하여 앞의 이론 논문에서 수행한 수치해석의 결과와 비교 검토하였다.

Dynamic MRM Measurements of Multi-Biomarker Proteins by Triple-Quadrupole Mass Spectrometry with Nanoflow HPLC-Microfluidics Chip

  • Ji, Eun-Sun;Cheon, Mi-Hee;Lee, Ju-Yeon;Yoo, Jong-Shin;Jung, Hyun-Jin;Kim, Jin-Young
    • Mass Spectrometry Letters
    • /
    • 제1권1호
    • /
    • pp.21-24
    • /
    • 2010
  • The development of clinical biomarkers involves discovery, verification, and validation. Recently, multiple reaction monitoring (MRM) coupled with stable isotope dilution mass spectrometry (IDMS) has shown considerable promise for the direct quantification of proteins in clinical samples. In particular, multiple biomarkers have been tracked in a single experiment using MRM-based MS approaches combined with liquid chromatography. We report here a highly reproducible, quantitative, and dynamic MRM system for validating multi-biomarker proteins using Nanoflow HPLC-Microfluidics Chip/Triple-Quadrupole MS. In this system, transitions were acquired only during the retention window of each eluting peptide. Transitions with the highest MRM-MS intensities for the five target peptides from colon cancer biomarker candidates were automatically selected using Optimizer software. Relative to the corresponding non-dynamic system, the dynamic MRM provided significantly improved coefficients of variation in experiments with large numbers of transitions. Linear responses were obtained with concentrations ranging from fmol to pmol for five target peptides.

ROV의 운동이 고려된 수중 로봇팔의 동적 작업공간 구동 제어 (Dynamic Workspace Control of Underwater Manipulator Considering ROV Motion)

  • 심형원;전봉환;이판묵
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.460-470
    • /
    • 2011
  • This paper presents a dynamic workspace control method of underwater manipulator considering a floating ROV (Remotely Operated vehicle) motion caused by sea wave. This method is necessary for the underwater work required linear motion control of a manipulator's end-effector mounted on a floating ROV in undersea. In the proposed method, the motion of ROV is modeled as nonlinear first-order differential equation excluded dynamic elements. For online manipulator control achievement, we develop the position tracking method based on sensor data and EKF (Extended Kalman Filter) and the input velocity compensation method. The dynamic workspace control method is established by applying these methods to differential inverse kinematics solution. For verification of the proposed method, experimental data based test of ROV position tracking and simulation of the proposed control method are performed, which is based on the specification of the KORDI deep-sea ROV Hemire.