• Title/Summary/Keyword: Dynamic tuning

Search Result 290, Processing Time 0.032 seconds

The Self-tuning PID Control Based on Real-time Adaptive Learning Evolutionary Algorithm (실시간 적응 학습 진화 알고리듬을 이용한 자기 동조 PID 제어)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1463-1468
    • /
    • 2003
  • This paper presented the real-time self-tuning learning control based on evolutionary computation, which proves its superiority in finding of the optimal solution at the off-line learning method. The individuals of the populations are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations is proposed. It is possible to control the control object slightly varied as time changes. As the state value of the control object is generated, evolutionary strategy is applied each sampling time because the learning process of an estimation, selection, mutation is done in real-time. These algorithms can be applied; the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

Tuning of Fuzzy Logic Current Controller for HVDC Using Genetic Algorithm (유전알고리즘을 사용한 HVDC용 퍼지 제어기의 설계)

  • Jong-Bo Ahn;Gi-Hyun Hwang;June Ho Park
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.36-43
    • /
    • 2003
  • This paper presents an optimal tuning method for Fuzzy Logic Controller (FLC) of current controller for HVDC using Genetic Algorithm(GA). GA is probabilistic search method based on genetics and evolution theory. The scaling factors of FLC are tuned by using real-time GA. The proposed tuning method is applied to the scaled-down HVDC simulator at Korea Electrotechnology Research Institute(KERI). Experimental result shows that disturbances are well-damped and the dynamic performances of FLC have the better responses than those of PI controller for small and large disturbances such as ULTC tap change, reference DC current change and DC ground fault.

Tuning Algorithm for PID Controller Using Model Reduction in frequency Domain (주파수 영역에서의 모델 축소를 이용한 PID 제어기의 동조 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2114-2116
    • /
    • 2001
  • Model reduction from high order systems to low order systems in frequency domain is considered four point (${\angle}$G(jw)=0, - ${\pi}/2$, ${\pi}$, and -3${\pi}$/2) instead of two point (${\angle}$G(jw) = - ${\pi}$/2,- ${\pi}$) of existing method in Nyquist curve. The Performances of reduced order model by proposed approach is similar to original model. In this paper, we proposed a new tuning algorithm for PID controller using model reduction in frequency domain. Simulations for some examples with varies dynamic characteristics are provided to show the effectiveness of the proposed tuning algorithm for PID controller using model reduction.

  • PDF

Fuzzy Robust Control with Constant Thrust Force on Load Variation for Linear Pulse Motor (리니어 펄스모터의 부하변동에 따른 일정추력 퍼지 강인제어)

  • Bae Dong-Kwan;Kim Kwang-Heon;Park Hyun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.40-44
    • /
    • 2002
  • In this paper, robust control method using fuzzy PI parameter tuning is proposed to control constant thrust force on load variation. First, a structure and thrust force equations of the LPM are described. Second, an controller with PI parameter-tuning using a fuzzy theory is proposed to achieve high-precision position with constant thrust force of the LPM. Finally, the effectiveness of an fuzzy PI controller is demonstrated by some simulated and experimental results. Accurate tracking response and superior dynamic performance can be obtained due to the powerful on-line Fuzzy PI gain tuning method with regard parametric variations and load thrust force variations.

  • PDF

A New Approach to Identify Optimal Properties of Shunting Circuits for Maximum Damping of Structural vibration using Piezoelectric Patches (파동전달 특성을 이용한 압전션트 감쇠의 새로운 최적화방법)

  • Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.465-468
    • /
    • 2004
  • The performance of the piezoelectric patches as vibration control elements depends on the shunting electronics which are designed to dissipate vibration energy through a resistive element. In this study, tuning of the shunting circuits is performed based on the wave propagation characteristics. Optimization of the electronic component is performed depending on the dynamic and geometric properties which include boundary conditions and position of the shunted piezoelectric patch relative to the structure. The developed tuning methods showed superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions.

  • PDF

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

Dynamic Modeling of Autonomous Underwater Vehicle for Underwater Surveillance and Parameter Tuning with Experiments (수중정찰용 자율무인잠수정의 운동 모델링 및 시험을 통한 계수 조정)

  • Lee, Phil-Yeop;Park, Sung-Kook;Kwon, Soon Tae;Park, Sangwoong;Jung, Hunsang;Park, Min-Soo;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-498
    • /
    • 2015
  • This paper presents the dynamic model of an AUV called HW200 for underwater surveillance. The mathematical model of HW200 is briefly introduced, considering its shape. The maneuvering coefficients were initially estimated using empirical formulas and a database of vehicles with similar shapes. A motion simulator, based on Simulink of Mathworks, was developed to evaluate the mathematical model of the vehicle and to tune the maneuvering coefficients. The parameters were finely tuned by comparing the experimental results and simulated responses generated with the simulator by applying the same control inputs as the experiment. The velocity of HW200 in the tuning process was fixed at a constant forward speed of 1.83 m/s. Simulations with variable speed commands were conducted, and the results showed good consistency in the motion response, attitude, and velocity of the vehicle, which were similar to those of the experiment even under the speed variation. This paper also discusses the feasibility of its application to a model-based integrated navigation system (INS) using the auxiliary information on the velocities generated by the model.

Modeling and Dynamic Analysis of Electromechanical System in Machine Tools (1$^{st}$ Report) - Gain Tuning of PI Speed Controller - (공장기계 시스템의 모델링과 동적특성 분석 (제1보) - PI 속도 제어기의 제어이득 설정 -)

  • Park, Yong-Hwan;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.265-271
    • /
    • 1999
  • In the feed drive systems or the spindle systems of machine tools that consist of many mechanical components, a torsional vibration is often generated because of its elastic elements in torque transmission-Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed m1d spindle system. In this paper, based on the DC motor model, a model of electro-drive system with motor has been developed and an optimal criterion for tuning the gain of speed controller is discussed. The frequency bandwidth of the system and the damping ratio in time domain are optimal design specifications for the gain adjustment speed controller. The gains of PI speed controller are then derived from the bandwidth and damping ratio, and those relationships have been classified.

  • PDF

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Development and Validation of Dynamic Model for KC-100 UAS (KC-100 항공기 무인화를 위한 운동모델 구축 및 검증)

  • Seong Hyeon Kim;Ji Bon Kim;Jung Hoon Lee;Eung Tai Kim;Byoung Soo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.79-87
    • /
    • 2023
  • To design a control law of an aircraft, an accurate aircraft dynamic model is required. To obtain an aerodynamic database (DB) to build a dynamic model, a large number of wind tunnel tests are typically required. However, when flight test data of target aircraft exist such as in the process of unmanned conversion of a manned aircraft, an aircraft dynamic model can be obtained through a parameter estimation method and a DB tuning procedure. This paper describes a nonlinear model construction process and a verification method for KC-100 OPV aircraft. Flight data compatibility analysis was performed to determine suitability of the estimation method application. Linear model estimation was performed using the maximum likelihood estimation method. Results of aerodynamic DB tuning process and verification applying the FFS standard to the nonlinear model constructed are presented.