• Title/Summary/Keyword: Dynamic state

Search Result 3,205, Processing Time 0.027 seconds

The State Space Identification Model of the Dynamic System using Neural Networks (신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델)

  • 이재현;탁환호;이상배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.442-448
    • /
    • 2000
  • The conventional control of dynamic systems needs accurate mathematical modeling of control systems. But the modeling of dynamic systems require very complex computation process due to complex state equation and many control parameters. Accordingly this paper proposes a state space identification model of the dynamic system using neural networks. The Gauss-Newton method is used to train the proposed neural network and the effectiveness of proposed method is verified through the computer simulation of the Seesaw system identification problem.

  • PDF

A New Dynamic Transmission-Mode Selection Scheme for AMC/HARQ-Based Wireless Networks

  • Ma, Xiaohui;Li, Guobing;Zhang, Guomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5360-5376
    • /
    • 2017
  • In this paper, we study the cross-layer design for the AMC/HARQ-based wireless networks, and propose a new dynamic transmission-mode selection scheme to improve system spectrum efficiency. In the proposed scheme, dynamic thresholds for transmission-mode selection in each packet transmission and retransmission are jointly designed under the constraint of the overall packet error rate. Comparing with the existing schemes, the proposed scheme is inclined to apply higher modulation order at the first several (re)transmissions, which corresponds to higher-rate transmission modes thus higher average system spectrum efficiency. We also extend the cross-layer design to MIMO (Multi-input Multi-output) communication scenarios. Numerical results show that the proposed new dynamic transmission-mode selection scheme generally achieves higher average spectrum efficiency than the conventional and existing cross-layer design.

Time Domain Identification of Nonlinear Structural Dynamic Systems Using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 비선형 동적 구조계의 시간영역 규명기법)

  • Yun, Chung-Bang;Koo, Ki-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.117-126
    • /
    • 2001
  • In this study, the recently developed unscented Kalman filter (UKF) technique is studied for identification of nonlinear structural dynamic systems as an alternative to the extended Kalman filter (EKF). The EKF, which was originally developed as a state estimator for nonlinear systems, has been frequently employed for parameter identification by introducing the state vector augmented with the unknown parameters to be identified. However, the EKF has several drawbacks such as biased estimations and erroneous estimations especially for highly nonlinear dynamic systems due to its crude linearization scheme. To overcome the weak points of the EKF, the UKF was recently developed as a state estimator. Numerical simulation studies have been carried out on nonlinear SDOF system and nonlinear MDOF system. The results from a series of numerical simulations indicate that the UKF is superior to the EKF in the system identification of nonlinear dynamic systems especially highly nonlinear systems.

  • PDF

Study of the Film Thickness in the Elastohydrodynamic Lubrication of Circular Contact under the Dynamic Loading Condition with Multigrid Multilevel Method (동하중조건에서의 다중격자 다중차원법을 이용한 점접촉 탄성유체윤활 유막두께연구)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.218-223
    • /
    • 2001
  • Many research of elastohydrodynamic lubrication (EHL) has been performed under the condition of steady state loding. However, mechanical elements undergo severe high loads that are fluctuating in general. Conventional numerical method for the circular contact of EHL study has a difficulty in converging the film pressure and thickness especially in high load of steady state. In this work, multigrid multilevel method expels the convergence problem under the condition of high load and very stable convergence is obtained under the dynamic loading condition over 1.0GPa. Several results of dynamic loading condition are shown and compared with those of steady state condition.

  • PDF

Applications of Disturbed State Concept for the dynamic behaviors of fully saturated soils (포화사질토의 동적거동규명을 위한 교란상태개념의 이용)

  • 최재순;박근보;서경범;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-147
    • /
    • 2003
  • There are many problems in the prediction of soil dynamic behaviors because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical methods based on the dynamic constitutive model have been proposed but the model hardly predict the excess pore water pressure directly. In this study, the verification on the disturbed state concept (DSC) model, proposed by Dr, Desai was performed. Some laboratory tests such as conventional triaxial tests and cyclic triaxial tests were carried out to determine DSC Parameters and then disturbance values are determined by the proposed equation. Through this verification, it is proved that the disturbed state concept can express reliably the soil dynamic characteristics such as excess pore water pressure and strain softening behavior. It is also found that the critical disturbance which is determined at the minimum curvature of disturbance function can be a the specific index.

  • PDF

The design T-S fuzzy model-based target tracking systems (T-S 퍼지모델 기반 표적추적 시스템)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

The effect of field-line twist on the dynamic nature and electric current structure of emerging magnetic field on the Sun

  • An, Jun-Mo;Magara, Tetsuya;Lee, Hwan-Hee;Kang, Ji-Hye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.87.1-87.1
    • /
    • 2012
  • We use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emergence of magnetic field is considered as one of the key physical process producing solar activity such as flares, jets, and coronal mass ejections. To understand these activities we have to know dynamic nature and electric current structure provided by emerging magnetic field. To demonstrate dynamic nature of field lines, we focus on the factors such as curvature of magnetic field line and scale height of magnetic field strength. These factors show that strong twist case forms two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state. For weak twist case, it still shows two-part structure but the tendency becomes weaker than strong twist case. We discuss how the curvature distribution affects the dynamic nature of emerging magnetic field. We also investigate electric current distribution provided by emerging field lines to show a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.

A Transient Response Analysis in the State-space Applying the Average Velocity Concept (평균속도 개념을 적용한 상태공간에서의 과도응답해석)

  • 김병옥;김영철;김영춘;이안성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.