• 제목/요약/키워드: Dynamic shear behavior

검색결과 465건 처리시간 0.033초

원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화 (Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell)

  • 이창훈;우호길;구경회;이재한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

Dynamic behavior of FGM beam using a new first shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E.A.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.451-461
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface based formulation, and consequently, the governing equations and boundary conditions of functionally graded beams based on neutral surface have the simple forms as those of isotropic plates. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

Steady and Dynamic Shear Rheological Properties of Buckwheat Starch-galactomannan Mixtures

  • Choi, Dong-Won;Chang, Yoon-Hyuk
    • Preventive Nutrition and Food Science
    • /
    • 제17권3호
    • /
    • pp.192-196
    • /
    • 2012
  • This study investigated the effects of galacomannans (guar gum, tara gum, and locust bean gum) on the rheological properties of buckwheat starch pastes under steady and dynamic shear conditions. The power law and Casson models were applied to describe the flow behavior of the buckwheat starch and galactomannan mixtures. The values of the apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for buckwheat starch-galactomannan mixtures were significantly greater than those for the control, indicating that there was a high synergism of the starch with galactomannans. The magnitudes of storage modulus (G') and loss modulus (G") for the starch-galactomannan mixtures increased with increasing frequency (${\omega}$). The dynamic moduli (G', G"), and complex viscosity (${\eta}^*$) for the buckwheat starch-galactomannan mixtures were significantly higher than those for the control.

ECAP으로 제조된 초미세림 Al-Mg 합금의 동적 변형거동 (High-Strain Rate Deformation of Ultra-Fine Grained Al-Mg Alloys Fabricated by Equal-Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이성학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.306-309
    • /
    • 2009
  • The influence of equal-channel angular pressing (ECAP) route on dynamic deformation behavior of ultra-fine grained Al-4.4%Mg alloys was investigated in this study. The 8-pass ECAPed specimens consisted of ultra-fine grains of $0.5{\mu}m$ in size, and contained the considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. The result of dynamic torsional tests indicated that the maximum shear stress and fracture shear strain were lowest in the specimen deformed by ECAP via route A among the 8-pass ECAPed specimens. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity related to ECAP routes.

  • PDF

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

발파 암반-콘크리트 경계면에서의 전단거동특성에 대한 수치해석적 연구 (A Numerical Study on Shear Behavior of the Interface between Blasted Rock and Concrete)

  • 민경조;고영훈;;오세욱;김정규;정문경;조상호
    • 화약ㆍ발파
    • /
    • 제37권4호
    • /
    • pp.26-35
    • /
    • 2019
  • 타정식 현수교의 중력식 앵커리지를 설계하는 데 있어, 지반과 콘크리트 앵커블록 사이에 작용하는 접촉 마찰력은 교량의 주케이블의 장력을 지지하는데 많은 기여를 하고 있기 때문에 콘크리트와 암반 사이 접촉면의 마찰 및 전단 저항 특성을 이해하는 것이 중요하다. 이를 위해, 본 연구에서는 휴대용 레이저 스캐너를 활용하여 발파 바닥면을 스캐닝하였으며, 이를 바탕으로 3차원 모델링 및 거칠기를 정량적으로 분석하였다. 또한 발파 바닥암반 단면 데이터를 활용하여, 발파 바닥암반-콘크리트 경계면을 갖는 모델을 생성하였다. 동적파괴과정해석기법(DFPA-3D)를 활용하여, 해당 모델에 대한 직접 전단시험 모사를 수행하였으며, 이를 바탕으로 발파 바닥암반-콘크리트 접촉면에 대한 전단파괴 거동을 확인 및 분석하였다.

A method for dynamic analysis of frame-hinged shear wall structures

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.45-61
    • /
    • 2016
  • Structures with soft story irregularity have been seriously damaged in earthquakes. Therefore, the analysis of dynamic behavior of structures with soft story irregularity is of great value and relevance. In this study, a certain method will be used to discover the displacements and internal forces and to find out results about soft story irregularity. For this study, the multi-story frame-hinged shear wall system has been used as a model according to the continuous calculation system. The dynamic characteristics of the system have been obtained by analyzing the governing differential equation of the system. The dynamic characteristics have been calculated for a practical and quick analysis as indicated in tables. The suggested method is wholly based on manual calculation. A spectral analysis can be easily conducted with the help of Tables provided by this study. A sample has been solved and compared to the finite elements method to study the suitability of the method suggested at the end of this study.

화강풍화토의 동결-융해 후의 동적 거동 (Dynamic Behavior of Weathered Granite Soils after Freezing-thawing)

  • 윤여원;김세은;강병희;강대성
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.69-78
    • /
    • 2003
  • 화강풍화토의 동결-융해 전후의 동적 거동을 구명하기 위하여 반복삼축압축시험을 수행하였다. 화강풍화토의 실트 함유량 20%이내에서 동결-융해를 받지 않은 공시체와 동결-융해를 받은 공시체를 구속압력을 변화시켜 동적 물성치인 전단탄성계수와 감쇠비의 변화 특성을 고찰하였다. 또한 점성토의 함유량을 각각 다르게 하여 소성지수의 변화에 따른 동결-응해 후의 동적 거동의 변화를 고찰하였다. 연구결과, 화강풍화토의 실트함유량이 증가할수록 전단탄성계수는 감소하였다. 그러나 동일한 밀도, 구속압력의 조건에서 동결-융해를 받은 화강풍화토의 전단탄성계수는 실트함유량에 관계없이 전단탄성계수에 큰 차이가 없었다. 점토를 함유한 소성지수 20이내의 화강풍화토의 전단탄성계수는 소성지수가 클수록 증가하였으며 동결-융해를 받게되면 전단탄성계수의 감소가 뚜렷하게 나타났다.

확률론적 지진하중에 의한 모멘트 골조의 동적 거동평가 (Evaluation of Dynamic Behavior of moment resisting frame under probabilistic ground motions)

  • 권오성;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.565-570
    • /
    • 2001
  • Base shear and roof drift relation was acquired from experiment of 3 story ordinary moment resisting frame which was designed using gravity loads. To evaluate the dynamic behavior of the frame, analytical model was generated from experimental result. Dynamic analysis was performed using the analytical model subjected to earthquake ground motions with 500, 1000, and 2400 years of return period. And capacity spectrum method was adopted to find the performance points of the frame. Both dynamic analysis and CSM showed that the performance of the frame meet the life safety objectives suggested by FEMA 273 and ATC 40.

  • PDF