• Title/Summary/Keyword: Dynamic response optimization

Search Result 248, Processing Time 0.021 seconds

Structural Optimization under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement (변위에 기초한 동하중에서 변환된 등가정하중하에서의 구조최적설계)

  • Gang, Byeong-Su;Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1949-1957
    • /
    • 2000
  • All the loads in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are utilized with dynamic factors. The dyna mic factors are generally determined based on experiences. Therefore, the static loads can cause problems in precise analysis and design. An analytical method based on modal analysis has been proposed for the transformation of dynamic loads into equivalent static load sets. Equivalent static load sets are calculated to generate an identical displacement field in a structure with that from dynamic loads at a certain time. The process is derived and evaluated mathematically. The method is verified through numerical tests. Various characteristics are identified to match the dynamic and the static behaviors. For example, the opposite direction of a dynamic load should be considered due to the vibration response. A dynamic bad is transformed to multiple equivalent static loads according to the number of the critical times. The places of the equivalent static load can be different from those of the dynamic load. An optimization method is defined to use the equivalent static loads. The developed optimization process has the same effect as the dynamic optimization which uses the dynamic loads directly. Standard examples are solved and the results are discussed

An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design (동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰)

  • Lee Hyun-Ah;Kim Yong-Il;Kang Byung-Soo;Kim Joo-Sung;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam (차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계)

  • 이춘승;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

A Survey on the Real Time Vehicle Routing Problems (실시간 차량 경로 계획 문제의 연구 동향)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.155-166
    • /
    • 2008
  • During last two decades the transportation system has developed into very intelligent system with GIS, GPS and ITS. The practical transportation management system provides real time response module to manage the customer's order. We have surveyed research papers on the real time vehicle routing problem in last two decades to figure out the dynamic vehicle routing problem. The papers are classified by basic routing algorithms and by managing the dynamic events which are the order management, the routing re-optimization, the routing post-optimization and the waiting strategy.

Controller Optimization Algorithm for a 12-pulse Voltage Source Converter based HVDC System

  • Agarwal, Ruchi;Singh, Sanjeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.643-653
    • /
    • 2017
  • The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Material Selection Optimization of A-Pillar and Package Tray Using RBFr Metamodel for Minimizing Weight (경량화를 위한 RBFr 메타모델 기반 A-필러와 패키지 트레이의 소재 선정 최적화)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, we propose the method of optimally selecting material of front pillar (A-pillar) and package tray for minimizing weight while satisfying vehicle requirements on static stiffness and dynamic stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness and dynamic stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the radial basis function regression (RBFr). Using the RBFr models, optimization is carried out an evolutionary algorithm that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 49.8% while satisfying all the design constraints.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

A Novel Technique for Tuning PI-Controllers in Induction Motor Drive Systems for Electric Vehicle Applications

  • Elwer Ayman Saber
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.322-329
    • /
    • 2006
  • In the last decade, the increasing restrictions imposed on the exhaust emissions from internal combustion engines and traffic limitations have increased the development of electrical propulsion systems for automotive applications. The goal of electrical and hybrid vehicles is the reduction of global emissions, which in turn leads to a decrease in fuel resource exploitation. This paper presents a novel approach for control of Induction Motors (IM) using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Proportional Integral Controller (PI-Controller). The overall system is simulated under various operating conditions. The use of PSO as an optimization algorithm makes the drive robust and insensitive to load variation with faster dynamic response and higher accuracy. The system is tested under variable operating conditions. The simulation results show a positive dynamic response with fast recovery time.