• 제목/요약/키워드: Dynamic response model

검색결과 2,002건 처리시간 0.028초

구동장치의 정밀한 위치제어를 위한 구동제어기법에 대한 해석적 연구 (An Analytical Study on Control Algorithm for the Precise Position Control of the Actuator System)

  • 안원근
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2016
  • 모터와 기어를 적용한 구동장치를 이용하여 정밀한 위치제어를 수행하기 위하여 I-PD 제어기법과 이중루프를 시스템에 적용한다. I-PD 제어기법은 과도응답 시 오버슛을 줄이는 동작을 수행함으로써 정밀한 위치 추종 결과를 얻는다. 또한 두 개의 센서와 이중루프를 이용하여 기어 시스템의 end play 성분에 의해 발생할 수 있는 위치추종에 대한 악영향을 저감하여 구동장치가 정밀한 위치추종을 할 수 있도록 한다. 본 연구에서는 이러한 개념을 설명하고, 동특성 변화에 의한 위치추종 결과를 확인하기 위하여 BLDC 모터와 기어를 적용한 구동장치 모델을 이용하여 시뮬레이션 결과로 검증하였다.

A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavebdra Rao, M.V.;Asha, M.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.29-44
    • /
    • 2010
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios which was underlain by either rigid concrete base, under both dry and saturated condition. The effect of saturation on the damping ratio of finite sand stratum underlain by a rigid base has been verified and compared with the results obtained for the case of finite dry sand stratum underlain by the rigid base. Comparison of results of the experimental study showed that the damping in both the cases is less than 10%. The damping ratio obtained for finite saturated sand stratum is marginally lower than that obtained on finite dry sand stratum at H/B ratio of 0.5. The difference between the two cases becomes significant when the H/B ratio increases to 3.0, indicating the significant influence of soil moisture on damping ratio of foundation- soil system with increase in the thickness of the finite sand stratum. Comparison of the predicted damping ratio for a homogeneous sand stratum with the experimental damping ratio obtained corresponding to the height to width ratio of 3.0 of the finite sand stratum underlain by the rigid concrete base indicates a significant reduction in damping ratio of the foundation-soil system for both the cases.

Performance-based earthquake engineering methodology for seismic analysis of nuclear cable tray system

  • Huang, Baofeng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2396-2406
    • /
    • 2021
  • The Pacific Earthquake Engineering Research (PEER) Center has been developing a performance-based earthquake engineering (PBEE) methodology, which is based on explicit determination of performance, e.g., monetary losses, in a probabilistic manner where uncertainties in earthquake ground motion, structural response, damage estimation, and losses are explicitly considered. To carry out the PEER PBEE procedure for a component of the nuclear power plant (NPP) such as the cable tray system, hazard curve and spectra were defined for two hazard levels of the ground motions, namely, operation basis earthquake, and safe shutdown earthquake. Accordingly, two sets of spectral compatible ground motions were selected for dynamic analysis of the cable tray system. In general, the PBEE analysis of the cable tray in NPP was introduced where the resulting floor motions from the time history analysis (THA) of the NPP structure should be used as the input motion to the cable tray. However, for simplicity, a finite element model of the cable tray was developed for THA under the effect of the selected ground motions. Based on the structural analysis results, fragility curves were generated in terms of specific engineering demand parameters. Loss analysis was performed considering monetary losses corresponding to the predefined damage states. Then, overall losses were evaluated for different damage groups using the PEER PBEE methodology.

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

Vibro-acoustic modelling of immersed cylindrical shells with variable thickness

  • Wang, Xianzhong;Lin, Hongzhou;Zhu, Yue;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.343-353
    • /
    • 2020
  • Based on the Precise Transfer Matrix Method (PTMM), the dynamic model is constructed to observe the vibration behaviour of cylindrical shells with variable thickness by solving a set of first-order differential equations. The free vibration of stiffened cylindrical shells with variable thickness can be obtained to compare with the exact solution and FEM results. The reliability of the present method of free vibration is well proved. Furthermore, the effect of thickness on the vibration responses of the cylindrical shell is also discussed. The acoustic response of immersed cylindrical shells is analyzed by a Pluralized Wave Superposition Method (PWSM). The sound pressure coefficient can be gained by collocating points along the meridian line to satisfy the Neumann boundary condition. The mode convergence analysis of the cylindrical shell is carried out to guarantee calculation precision. Also, the reliability of the present method on sound radiation is verified by comparing with experimental results and numerical results.

Ambidexterity and Leadership Agility in Micro, Small and Medium Enterprises (MSME)'s Performance: An Empirical Study in Indonesia

  • KUSTYADJI, Gatot;WINDIJARTO, Windijarto;WIJAYANI, Ari
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권7호
    • /
    • pp.303-311
    • /
    • 2021
  • Ambidexterity and leadership agility have become the most researched topics to analyze their application in companies, especially in this dynamic era. Several researchers have analyzed it in large companies. However, only a few have discussed the two topics simultaneously and at the MSME level. This study aims to analyze the relationship between ambidexterity and leadership agility and innovation capability and performance at MSMEs in Yogyakarta and East Java, Indonesia. This study is analyzed by using quantitative methods with SEM (Structural Equation Model) methods. The data in this study is primary data that is obtained through distributing 230 questionnaires to MSME managers in Yogyakarta and East Java, Indonesia. From 230 questionnaires distributed, 200 questionnaires are returned and completed, so the response rate in this study is 86%. The results in this study indicate that ambidexterity and leadership agility have a significant effect on innovation capability and MSME performance. This study also proved that innovation capability has a significant effect on MSME performance. Therefore, it is recommended for MSME managers to develop ambidexterity and leadership agility so they can create innovation and good performance. In the end, this study has provided findings related to the combination of ambidexterity and leadership agility variables.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

지역물류산업과 경제성장의 관계에 대한 패널분석 (Panel Analysis of Relationship Between Regional Logistics Industry and Economic Growth in Korea)

  • 최봉호;이기환
    • 무역학회지
    • /
    • 제44권2호
    • /
    • pp.173-188
    • /
    • 2019
  • The purpose of this study is to investigate the causal relationship between the logistics industry and the economic growth in Korea, and to provide implications for the contribution of the logistics industry to economic growth. Unlike Previous Related Studies, we derive short-term and long-term effects through dynamic panel analysis such as panel Granger causality test and impulse response function estimation using panel vector error correction model. The results of the empirical analysis are as follows: Labor input of the logistics industry has the greatest positive impact on economic growth. And capital input and total sales of the logistics industry have a negative effect on economic growth. This means that Korea's logistics industry features labor-intensive growth. In addition, We have also found that the growth (sales) and capital input of the logistics industry have not yet had a direct positive impact on economic growth. Therefore, the results of this analysis provide implications for the direction of logistics industry policy to enhance contribution of the logistics industry to economic growth.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

Modal identification of time-varying vehicle-bridge system using a single sensor

  • Li, Yilin;He, Wen-Yu;Ren, Wei-Xin;Chen, Zhiwei;Li, Junfei
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.107-119
    • /
    • 2022
  • Modal parameters are widely used in bridge damage detection, finite element model (FEM) updating and design optimization. However, the conventional modal identification approaches require large number of sensors, enormous data processing workload, but normally result in mode shapes with low accuracy. This paper proposes a modal identification method of time-varying vehicle-bridge system using a single sensor. Firstly, the essential physical relationship between the instantaneous frequency of the vehicle-bridge system and the bridge mode shapes are derived. Subsequently, based on the synchroextracting transform, the instantaneous frequency of the system is tracked through the dynamic response collected by a single sensor, and further the modal parameters are estimated by using the derived physical relationship. Then numerical and experimental examples are conducted to examine the feasibility and effectiveness of the proposed method. Finally, the modal parameters identified by the proposed method are applied in bridge FEM updating. The results manifest that the proposed method identifies the modal parameters with high accuracy via a single sensor, and can provide reliable data for the FEM updating.