• 제목/요약/키워드: Dynamic recrystallization

검색결과 167건 처리시간 0.021초

기계적 합금화된 Al-8wt% Fe분말의 고온 변형거동 (The High Temperature Deformation Behavior of Mechanically)

  • 조권구;이도인;안인섭;허보영;조종춘;김선진;문인형
    • 한국재료학회지
    • /
    • 제3권1호
    • /
    • pp.50-57
    • /
    • 1993
  • 기계적 합금화 방법으로 제조된 A-8wt%Fe합금분말의 진공고온 소결거동을 분석하였고 이 소결체의 고온변형거동을 연구하기 위하여 35$0^{\circ}C$-45$0^{\circ}C$의 온도 범위에서 여러 변형률속도로 압축 시험을 수행하였다. 또한 이 소결체의 열적안정성을 조사하기 위하여 30$0^{\circ}C$-50$0^{\circ}C$온도 범위에서 각각 60시간 동안 열처리한 후 경도시험을 수행하였다. 압축응력은 변형률이 증가함에 따라 급격히 증가하여 변형률 약 3%에서 최대응력에 이르렀으며, 최대응력 이후 다소 연화현상을 보인 후 유동응력은 가공경화돠 동적 재결정의 평형률 30%까지 일정하였다. 또한 60시간 열처리에 따른 소결시편의 경도는 40$0^{\circ}C$에서 부터 급격히 감소하였다.

  • PDF

EBSD측정에 의한 반복겹침접합압연된 무산소동의 두께방향으로의 미세조직 변화 분석 (Microstructural Evolution Analysis in Thickness Direction of An Oxygen Free Copper Processed by Accumulative Roll-Bonding Using EBSD Measurement)

  • 이성희;임차용
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.585-590
    • /
    • 2014
  • Microstructural evolution in the thickness direction of an oxygen free copper processed by accumulative rollbonding (ARB) is investigated by electron back scatter diffraction (EBSD) measurement. For the ARB, two copper alloy sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked and roll-bonded by about 50% reduction rolling without lubrication at an ambient temperature. The bonded sheet is then cut to the two pieces of the same dimensions and the same procedure was repeated on the sheets up to eight cycles. The specimen after 1 cycle showed inhomogeneous microstructure in the thickness direction so that the grains near the surface were finer than those near the center. This inhomogeneity decreased with an increasing number of ARB cycles, and the grain sizes of the specimens after 3 cycles were almost identical. In addition, the aspect ratio of the grains decreased with an increasing number of ARB cycles due to the subdivision of the grains by shear deformation. The fraction of grains with high angle grain boundaries also increased with continuing process of the ARB so that it was higher than that of the low angle grain boundaries in specimens after 3 cycles. A discontinuous dynamic recrystallization occurred partially in specimens after 5 cycles.

초고강도 합금강의 이종마찰교반 접합부에서의 미세조직 특성 및 기계적 물성 연구 (Microstructural and Mechanical Analysis of a Friction Stir Welded Joint of Dissimilar Advanced High-Strength Steels)

  • 이지우;조훈휘;;;홍성태
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.11-19
    • /
    • 2020
  • For microstructural analysis of a friction stir welded (FSWed) joint of advanced high-strength steels, dual phase (DP) and complex phase (CP) steels, are studied. FSWed joints are successfully fabricated in the following four cases: (i) DP/DP; (ii) CP/CP; (iii) DP/CP, where the advancing side is DP and the retreating side is CP; (iv) CP/DP, where the advancing side is CP and the retreating side is DP. The stir zone (SZ) of (i) the DP/DP joint mainly consists of lath martensite, while the stir zone of (ii) the CP/CP joint consists not only of lath martensite but also of bainite. In the case of (iii) DP/CP and (iv) CP/DP, they exhibit a similar microstructure including acicular-shaped phases in the joints; however, cross-sections of the joints show differences in material mixing in each case. In (iv) the CP/DP joint, temperature towards the CP steel is sufficient to cause softening, thus leading to better mixing than that in (iii) DP/CP. The phases of the SZ in each of the four cases are formed by phase transformation during the FSWed process; however, the transformed phase volume fraction of CP steel is lower than that of DP steel, indicating that dynamic recrystallization occurs mainly in CP steel. The hardness values of the SZ are significantly higher than those of the base materials, especially, the SZ of (iii) the DP/CP joint has the highest value due to highest fraction of lath martensite.

육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과 (Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy)

  • 송국현;홍도형;양병모
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.

영광(靈光) 부근(附近) 연성전단대(延性剪斷帶)(전주전단대(全州剪斷帶))의 성질(性質)과 교차양상(交叉樣相)에 관(關)하여 (On the Properties and Intersection Feature of the Ductile Shear Zone (Chonju shear zone) near Yongkwang-Eub)

  • 전경석;장태우;이병주
    • 자원환경지질
    • /
    • 제24권4호
    • /
    • pp.435-446
    • /
    • 1991
  • Ductile shear zones developed in Jurassic granites in the Yonggwang area show NE trend at the eastern part and nearly EW trend at the western part, respectively. Judged from shear sense indicators, they have resulted from dextral strike-slip movement. The intersection of both trends is thought to be due to the truncation and offset of NE shear zone Chonju Shear zone by the brittle Yonggwang fault which runs in near EW direction with sinistral movement sense. The simple shear deformation was predominate through the deformation in this ductile shear zone. Based on this deformation mechanism, the shear strain (${\gamma}$) estimated in domain 1 increases from 0.14 at the shear zone margin to 9.41 toward the center of shear zone. Total displacement obtained only from this measured section(JK 59 to JK14) appecars to be 1434.5 meters. The sequential development of microstructures can be divided into three stages; weakly-foliated, well-foliated and banded-foliated stages. In the weakly-foliated stage dislocation glide mechanism might be predominant. In the well-foliated stage grain boundary migration and progressive misorientation of subgrains was remarkable during dynamic recovery and recrystallization. In the banded-foliated stage grain boundary sliding and microfracturing mechanisms accompanied with crushing and cracking were marked. According to strain analysis from quartzites of the metasedimentary rocks, strain intensity (${\gamma}$) of the samples within the ductile shear zone ranges from 2.7 to 5.7, while that of the samples out of the ductile shear zone appears to be about 1.7.

  • PDF

Fe-Ni-Co 코바 합금의 고온변형거동에 미치는 합금원소(Mn, Mo, B) 첨가의 영향 (Effect of Alloying Elements(Mn, Mo, B) on the High Temperature Deformation Behavior of Low Thermal Expansion Fe-Ni-Co Alloy)

  • 이기안;윤애천;박중철;남궁정;김문철
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.240-248
    • /
    • 2008
  • The effect of alloying elements(Mn, S, Mo, B) on the high temperature deformation behavior of Fe-29%Ni-17%Co (Kovar) alloy were investigated. And the effect of high temperature oxidation on the hot ductility was also studied. The hot ductility of Kovar alloy was drastically increased with the addition of Mn and lowering of S content. It has been found that the brittle intergranular fracture at high temperature cracking is closely associated with the FeS sulfide along the grain boundary. When Mn was added, the type of sulfide was changed to MnS from FeS and ductile intergranular fracture and transgranular fracture were promoted. The formation of oxide layer was found to have minimized the hot ductility of the Kovar alloy significantly. Grain boundary micro-cracks in the internal oxide region were noted following deformation due to high temperature, one of which acting as a notch that caused the poor hot workability of the oxidized specimen. The addition of Mo to the Kovar alloy could also retard the decrease in the hot ductility of the oxidized specimen through the prevention of notching due to internal oxidation. Hot ductility was remarkably improved by the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range ($900{\sim}1000^{\circ}C$).

A533B-1 원자로 압력용기 강의 미시적 파괴특성에 관한 연구 (A Study on the Microscopic Fracture Characteristics of A533B-1 Nuclear Pressure Vessel Steels)

  • Jang, Chang-Heui;Kim, In-Sup;Park, Soon-Pil
    • Nuclear Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.165-170
    • /
    • 1989
  • 준 동적 파괴가 일어나는 변형율속도 조건에서 A533B-1 원자로 압력용기강의 파괴인성 및 파괴저항특성에 미치는 변형율속도의 영향을 균열선단의 강 소성역 관찰 및 파면의 미세거칠기측정을 통해 연구하였다. 1/2T-CT 파괴시편에서 약 1.5mm 이하의 균열진전에 대해서는 소성일로 부터 구한 J와 수정 J가 거의 일치하였다. 파면의 미세거칠기로부터 구한 국부 변형율은 1.8-2.0 정도의 값을 나타내어 거시적으로 측정된 값보다 높은 값을 보여주었다. 이들 방법은 모두 변형율속도가 증가함에 따라 파괴인성은 증가하나 tearing modulus는 큰 변화가 없음을 보여주었다.

  • PDF

전분의 겔화와 노화에 미치는 당류의 영향 (Effect of Saccharides on the Gelation and Retrogradation of Starch)

  • 김경이
    • 한국식품저장유통학회지
    • /
    • 제10권4호
    • /
    • pp.506-511
    • /
    • 2003
  • DSC를 이용하여 acom starch와 com starch 및 starch-saccharide-water system 의 겔화와 노화에 관한 열적 메카니즘을 알아보았다. 전분에 fructose와 maltose를 첨가한 starch-saccharide-water 계의 엔탈피를 측정한 결과, 당을 첨가하지 않은 경우의 엔탈피 값보다 컸으며 겔화 온도 역시 증가하였는데 이는 당이 물과 상호 작용하여 비결정성 영역에 흡수된 자유수가 감소하고 결정부분이 안정화되어 겔화가 일어나는 것을 지연시키기 때문이라고 생각되었다. 노화 엔탈피는 acorn starch 와 com starch에 대해 1일 ∼ 14일까지 저장시간에 따르는 변화를 관찰한 결과, 저장시간이 길어짐에 따라 엔탈피 값이 유의성 있게 증가하는 경향을 나타내었으며 이는 amylopectin 의 재결정화가 서서히 일어나기 때문으로 보였다. 또한 s-s-w system의 노화과정을 관찰한 결과, 저장시간이 길어짐에 따라 엔탈피 값이 증가하다가 7일이 지나면서부터는 일정해졌다. 이는 당이 amylopectin의 재결정화를 정지시켜서 노화를 지연시키기 때문으로 판단되었다. 당의 첨가가 노화에 미치는 영향은 fructose와 maltose 중에서 maltose의 노화지연 효과가 더 컸는데 이는 전분 겔 계를 안정시키는 junction zone의 수와 equatorial OH 수 및 활동적인 수화상태가 증가되는 요인을 maltose가 fructose보다 더 많이 갖고 있기 때문인 것으로 설명할 수 있었다.

마찰교반공정을 통한 강재의 개질 영역에서의 미세조직에 미치는 합금원소의 영향 (Effect of Alloy Elements on Microstructure of Modified Area via Friction Stir Process in Steel Materials)

  • 김상혁;이광진;우기도
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.370-375
    • /
    • 2015
  • In this study, to confirm the effect of alloying elements on the phase transformation and conditions of the friction stir process, we processed two materials, SS400 and SM45C steels, by a friction stir process (FSP) under various conditions. We analyzed the mechanical properties and microstructure of the friction stir processed zone of SS400 and SM45C steels processed under 400RPM - 100mm/min conditions. We detected no macro (tunnel defect) or micro (void, micro crack) defects in the specimens. The grain refinement in the specimens occurred by dynamic recrystallization and stirring. The microstructure at the friction stir processed zone of the SS400 specimen consisted of an ${\alpha}$-phase. On the other hand, the microstructure at the friction stir processed zone of the SM45 specimen consisted of an ${\alpha}$-phase, $Fe_3C$ and martensite due to a high cooling rate and high carbon content. Furthermore, the hardness and impact absorption energy of the friction stir processed zone were higher than those of base metals. The hardness and impact absorption energy of FSPed SM45C were higher than that of FSPed SS400. Our results confirmed the effect of alloying elements on the phase transformation and mechanical properties of the friction stir processed zone.

마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향 (Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys)

  • 노국일;유준태;윤종훈;이호성
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).