• 제목/요약/키워드: Dynamic position

Search Result 1,574, Processing Time 0.883 seconds

Location-based Clustering for Skewed-topology Wireless Sensor Networks (편향된 토플로지를 가진 무선센서네트워크를 위한 위치기반 클러스터링)

  • Choi, Hae-Won;Ryu, Myung-Chun;Kim, Sang-Jin
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.171-179
    • /
    • 2016
  • The energy consumption problem in wireless sensor networks is investigated. The problem is to expend as little energy as possible receiving and transmitting data, because of constrained battery. In this paper, in order to extend the lifetime of the network, we proposed a location-based clustering algorithm for wireless sensor network with skewed-topology. The proposed algorithm is to deploy multiple child nodes at the sink to avoid bottleneck near the sink and to save energy. Proposed algorithm can reduce control traffic overhead by creating a dynamic cluster. We have evaluated the performance of our clustering algorithm through an analysis and a simulation. We compare our algorithm's performance to the best known centralized algorithm, and demonstrate that it achieves a good performance in terms of the life time.

Kinematical Analysis of Handball Step Shoot according to Attack Position (공격위치에 따른 핸드볼 스텝슛의 운동학적 분석)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.55-66
    • /
    • 2005
  • The present study used a video analysis system to quantify the kinematical data of step shoot motion by male university handball players. From the results of analyzing dynamic variables of step shoot motion according to shooting direction were drawn conclusions as follows. 1. The height of release was proportional to the height of players, and the height of release appeared low in left-side attacks. This is probably because the left-right-throwing angle is larger in left-side attacks than that in center attacks and right-side attacks and, as a result, the throwing arm is lowered down in throwing. 2. The leftward inclination angle of the body was larger in order of right-side attacks > center attacks > left side attacks. 3. Players' throwing form was close to three quarter style in left-side attacks. In center and right-side attacks, the arm was somewhat more upright but still it was more three quarter style than overhand style. 4. The front-rear throwing angle at the moment of release was much higher in right-side attacks than in left-side ones. This is probably because the point of time for releasing the ball is usually late in right-side attacks and, as a result, the front-rear throwing angle becomes quite large. 5. The contribution of body parts on the ball speed was higher in order of the forearm > upper arm, hand > shoulder joint. 6. In players whose distance between the two legs at the moment of release, their body usually did not incline to the side much. Thus it is considered necessary to correct the right leg in their shooting motion. 7. According to the result of analyzing throwing form, the speed of the ball at the moment of leaving the hand was faster in right-side attacks than in left-side and center attacks.

Synthesis of Highly Selective Polyimide Material and Comparison of Gas Permeability by Molecular Dynamics Study (고선택성 폴리이미드 소재의 합성 및 분자동력학 연구를 통한 기체투과도의 비교)

  • Lee, Jung Moo;Kim, Deuk Ju;Jeong, Moon Ki;Lee, Myung Gun;Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.162-170
    • /
    • 2015
  • In this study, gas permeability of polyimide materials having a various amine group was measured and molecular dynamics was used to analyze the dynamic characteristics of the gas molecules in the polyimide by calculating the position and velocity of the gas molecules with change of the time. The gas permeability of polyimide membrane having substitution site which increase free volume in the polymer was increased. However, polyimide with rigid structure showed decreased gas permeability. As a result of analyzing the change in the gas permeation behavior using molecular dynamics simulations, we confirmed that the results show the same tendency with actual measurements of the gas permeability.

Nonlinear Liquid Sloshing Analysis in a Cylindrical Container by Arbitrary Lagrangian-Eulerian Approach (Arbitrary Lagrangian-Eulerian 기법에 의한 원통형 유체저장구조물 내부유체의 비선형 슬러싱 해석)

  • Kwon, Hyung-O;Cho, Kyung-Hwan;Kim, Moon-Kyum;Lim, Yun-Mook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.71-80
    • /
    • 2005
  • The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is nonlinear, but also because the position of the free surface varies with time in a manner not known a priori. Therefore, this nonlinear phenomenon, which is characterized by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. In this study, three-dimensional boundary element method(BEM), which is based on the so-called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only one displacement variable, even for a three-dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the developed procedure.

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

Beat tuning of Silla Great Bell (신라대종의 맥놀이 조절)

  • Kim, Seockhyun;Lee, Joong Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Silla Great Bell was made to reproduce King Seongdeok Divine Bell and it was restored to have the same structure and patterns. The most difficult problem was to reproduce the magnificent striking sound and dynamic hum tone with strong beat like in King Seongdeok Divine Bell. Especially, beating sound is attributed to the uncontrollable asymmetry occurring in the casting process, so it can not be predicted or controlled before casting. In this study, we introduce the method and process to make Silla Great Bell have a strong beat with a proper period. Position conditions of mode pairs and striking point for a strong beat were identified. Bell thickness was locally decreased to make proper period of beat. The process was performed according to the simulation result of an equivalent bell model. As a result, the original weak and long beat was made to a strong beat with a proper period.

Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios

  • Shang, Jingmiao;Zhou, Qiang;Liao, Haili;Larsen, Allan;Wang, Jin;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • Two-dimensional Delayed Detached Eddy Simulation (DDES) was carried out to investigate the uniform flow over a twin-box bridge deck (TBBD) with various gap ratios of L/C=5.1%, 12.8%, 25.6%, 38.5%, 73.3% and 108.2% (L: the gap-width between two girders, C: the chord length of a single girder) at Reynolds number, Re=4×104. The aerodynamic coefficients of the prototype deck with gap ratio of 73.3% obtained from the present simulation were compared with the previous experimental and numerical data for different attack angles to validate the present numerical method. Particular attention is devoted to the fluctuating pressure distribution and forces, shear layer reattachment position, wake velocity and flow pattern in order to understand the effects of gap ratio on dynamic flow interaction with the twin-box bridge deck. The flow structure is sensitive to the gap, thus a change in L/C thus leads to single-side shedding regime at L/C≤25.6%, and co-shedding regime at L/C≥35.8% distinguished by drastic changes in flow structure and vortex shedding. The gap-ratio-dependent Strouhal number gradually increases from 0.12 to 0.27, though the domain frequencies of vortices shedding from two girders are identical. The mean and fluctuating pressure distributions is significantly influenced by the flow pattern, and thus the fluctuating lift force on two girders increases or decreases with increasing of L/C in the single-side shedding and co-shedding regime, respectively. In addition, the flow mechanisms for the variation in aerodynamic performance with respect to gap ratios are discussed in detail.

A Structural Approach to On-line Signature Verification (구조적 접근방식의 온라인 자동 서명 겁증 기법)

  • Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.385-396
    • /
    • 2005
  • In this paper, a new structural approach to on-line signature verification is presented. A primitive pattern is defined as a part segmented by a local minimal position of speed. And a structural description of signature is composed of subpatterns which are defined as such forms as rotation shape, cusp shape and bell shape, acquired by composition of the primitives regarding the directional changes. As the matching method to find identical parts between two signatures, a modified DP(dynamic programming) matching algorithm is presented. And also, variation and complexity of local parts are computed from the training samples, and reference model and decision boundary are derived from these. Error rate, execution time and memory usage are compared among the functional approach, the parametric approach and the proposed structural approach. It is found that the average error rate can be reduced from 14.2% to 4.05% when the local parts of a signature are weighted and the complexity is used as a factor of decision threshold. Though the error rate is similar to that of functional approaches. time consumption and memory usage of the proposed structural approach are shown to be very effective.

  • PDF

Effects of Therapeutic Climbing Training on the Balance and Gait Ability in Chronic Stroke Patients

  • Lee, Soin;Ko, Mingyun;Park, Seju
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.3
    • /
    • pp.2126-2134
    • /
    • 2020
  • Background: Therapeutic climbing training, which originated in Germany, is a wall-hanging rock climbing-based therapy to increase the body's coordination through movement of the upper and lower limbs against gravity. However, there are no studies examining the effectiveness of therapeutic climbing training to treat balance and gait ability in patients with chronic stroke. Objectives: To investigate therapeutic climbing training program on balance and gait in patients with chronic stroke. Design: Pretest-posttest control group design. Methods: Fourteen patients with chronic hemiplegic stroke participated. Participants were randomized into the therapeutic climbing training group (TCTG, n=7) and the standard rehabilitation program group (SRPG, n=7) group. All subjects participated in the same standard rehabilitation program consisting of 60 minutes 5 times a week for 6 weeks. TCTG participated additionally in the therapeutic climbing program consisting of 30 minutes sessions 3 times a week for the same 6 weeks. Berg balance scale (BBS), Gaitview Measure, Timed up and go test (TUG) were measured. Results: In the TCTG, revealed a statistical difference in BBS between the groups; in the difference of plantar pressure ratio in the static standing position revealed a statistical difference between the groups after training; the balance ability in the one-leg standing tests increased significantly; the time in TUG decreased significantly after training in both groups; The changes in the difference of dynamic plantar pressure ratio were reduced significantly in the TCTG. Conclusion: Therapeutic climbing training contribute to improve balance and walking function in patients with chronic stroke.

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF