• 제목/요약/키워드: Dynamic numerical modeling

검색결과 474건 처리시간 0.03초

MATHEMATICAL ANALYSIS USING TWO MODELING TECHNIQUES FOR DYNAMIC RESPONSES OF A STRUCTURE SUBJECTED TO A GROUND ACCELERATION TIME HISTORY

  • Kim, Yong-Woo;Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.361-374
    • /
    • 2011
  • Two types of numerical modeling techniques were considered for the dynamic response of a structure subjected to a ground acceleration. One technique is based on the equation of motion relative to ground motion, and the other is based on the equation of absolute motion of the structure and the ground. The analytic background of the former is well established while the latter has not yet been extensively verified. The latter is called a large mass method, which allocates an appropriate large mass to the ground so that it causes the ground to move according to a given acceleration time history. In this paper, through the use of a single degree-of-freedom spring-mass system, the equations of motion of the two techniques were analyzed and useful theorems are provided on the large mass method. Using simple examples, the numerical results of the two modeling techniques were compared with analytic solutions. It is shown that the theorems provide a clear insight on the large mass method.

지진에 의한 암석 절리면에서의 전단변위 예측 모델링 (Numerical modeling of shear displacement on rock fractures due to seismic movement)

  • 이창수;김진섭;최영철;최희주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.411-414
    • /
    • 2014
  • Numerical modeling was conducted to estimate the amount of dislocation that may occur across a frictionless fracture during an earthquake using commercial code FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions). The applied motion was calculated to represent a Richter 6.0 magnitude earthquake at distances of 2 km from the fracture. The velocity-time history was generated from Svensk $K{\ddot{a}}arnbr{\ddot{a}}anslehantering$ AB report. In the report, The velocity field resulting from an earthquake on a fault located in the near-field (2 km distance) was modelled using a finite difference program, WAVE. The stress-time history was substituted for velocity-time history to perform dynamic analysis using FLAC3D. During the earthquake, the maximum dislocation and change of shear stress were about 1 cm and 2MPa, respectively. Because the fracture is frictionless in this study, all dislocations relax to zero after the earthquake motions have ceased.

  • PDF

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.

열린 균열이 있는 보의 효율적 모델링 방법 (An Efficient Modeling Method for Open Cracked Beam Structures)

  • Kim, M. D.;Park, S. W.;S. W. Hong;Lee, C. W.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.372.2-372
    • /
    • 2002
  • This paper presents an efficient modeling method fur open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of open cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the difficulty and numerical errors in association with re-meshing the structure. The proposed method is rigorously compared with a commercial finite element code. (omitted)

  • PDF

본드선도를 이용한 비례전자 감압밸브의 수치해석 (Numerical Analysis of Proportional Pressure Control Valve using Bondgraph)

  • 양경욱;허정규
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.62-70
    • /
    • 2008
  • The paper made a description of the method for numerical analysis and modeling of a proportional pressure control valve by bondgraph. The valve is a three port pressure regulator valve, consists of two subsystems; a proportional solenoid and a spool assembly. A purpose of this study is to analysis the dynamic characteristics of the valve using bondgraph method and to verified results that each of parameters has an effect on modeling. It considered the effect which the presence of solenoid, flow coefficient and non-linearity of resistance causes in the valve modeling. In particular, it is analyzed the effect that the solenoid interacted with modeling results and characteristics of the nonlinear resistance through orifice on the supply and discharge side of valve. Thus this paper described method to present nonlinear characteristics by bondgraph modeling method, so that we could know easily result that each parameters has an effect on the modeling.

  • PDF

비대칭 보의 굽힘-비틀림 연성 진동 해석 (Dynamic analysis of bending-torsion coupled vibration of non-symmetric beam)

  • 강병식;홍성욱;박중윤;조용주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.220-225
    • /
    • 2001
  • Asymmetric beams cause complicated vibration phenomena due to the inherent bending-torsion coupled vibration. In this paper, an exact dynamic element matrix for the bending-torsion coupled vibration of asymmetric beam is derived. An application of the derived exact dynamic element matrix is demonstrated by an illustrative example, wherein the natural frequencies by the proposed modeling method are compared with those available in the literature. Another numerical example is also illustrated which deals with a general beam with joints. The numerical study shows that the exact dynamic element model is useful for the dynamic analysis of asymmetric bending-torsion coupled beams.

  • PDF

열린 균열이 있는 일반 회전체계의 동적 모델링 및 해석 (Dynamic Modeling and Analysis of General Rotor Systems with Open Cracks)

  • 홍성욱;최성환;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.290-299
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked rotor bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method Is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis for rotor systems.

A Method of Hysteresis Modeling and Traction Control for a Piezoelectric Actuator

  • Sung, Baek-Ju;Lee, Eun-Woong;Lee, Jae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.401-407
    • /
    • 2008
  • The dynamic model and displacement control of piezoelectric actuators, which are commercially available materials for managing extremely small displacements in the range of sub-nanometers, are presented. Piezoceramics have electromechanical characteristics that transduce energy between the electrical and mechanical domains. However, they have hysteresis between the input voltage and output displacement, and this behavior is very demanding and complicated. In this paper, we propose a method of designing the control algorithm, and present the dynamic modeling equations that represent the hysteretic behavior between input voltage and output displacement. For this process, the piezoelectric actuator is treated as a second-order linear dynamic system and system constants are determined by the system identification method. Also, a classical PID controller is designed and used to regulate the output displacement of the actuator. To evaluate the performance of the proposed method, numerical simulation results are presented.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.