• 제목/요약/키워드: Dynamic numerical analysis

검색결과 2,585건 처리시간 0.027초

오일러 매개변수를 이용한 해저연약지반 무한궤도 차량의 동적거동 해석 (Dynamic Analysis of Underwater Tracked Vehicle on Extremely Soft Soil by Using Euler Parameters)

  • 김형우;홍섭;최종수;여태경
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.93-100
    • /
    • 2006
  • This paper is concerned with the dynamic analysis of an underwater tracked vehicle, operating on extremely soft soil of the deep-seafloor. The vehicle is assumed as a rigid-body with 6-dof. The orientation of the vehicle is defined by four Euler parameters. To solve the motion equations of the vehicle, the Newmark numerical integrator is used in the incremental-iterative algorithm. The normalization constraint of Euler parameters is satisfied by using of a sequential updating method. The hydrodynamic force and moment are included in the tracked vehicle's dynamics. The hydrodynamic effects on the performance of tracked vehicles are investigated through numerical simulations.

모드 근사화 방법을 이용한 대변위 운동을 하는 유연구조물의 비선형 모델링 및 동적해석 (Nonlinear Modeling and Dynamic Analysis of Flexible Structures Undergoing Overall Motions Employing Mode Approximation Method)

  • 김정영;현상학;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.550-555
    • /
    • 2001
  • This paper presents a nonlinear modeling method for dynamic analysis of flexible structures undergoing overall motions that employs the mode approximation method. This method, different from the naive nonlinear method that approximates only Cartesian deformation variables, approximates not only deformation variables but also strain variables. Geometric constraint relations between the strain variables and the deformation variables are introduced and incorporated into the formulation. Two numerical examples are solved and the reliability and the accuracy of the proposed formulation are examined through the numerical study.

  • PDF

동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계 (Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Modal Analysis of Constrained Multibody Systems Undergoing Constant Accelerated Motions

  • Park, Dong-Hwan;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1086-1093
    • /
    • 2004
  • The modal characteristics of constrained multibody systems undergoing constant accelerated motions are investigated in this paper. Relative coordinates are employed to derive the equations of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium position of a constrained multibody system needs to be obtained from the nonlinear equations of motion, which are then linearized at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the proposed method, two numerical examples are solved and the results obtained by using the proposed method are compared with those obtained by analytical and other numerical methods. The proposed method is found to be accurate as well as effective in predicting the modal characteristics of constrained multibody systems undergoing constant accelerated motions.

지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링 (Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction)

  • 오만교;김성환;한진태;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

심해 무인잠수정 1차 케이블의 동적거동 수치해석 (A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle)

  • 권도영;박한일;정동호
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

중형항공기 동적 실속 특성 해석 (DYNAMIC STALL ANALYSYS OF A MID-SIZED AIRCRAFT)

  • 이융교;김철완;안석민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.37-39
    • /
    • 2010
  • Aerodynamic analysis was done for a fuselage and wing configuration of a mid-sized aircraft using 3-dimensional Navier-Stokes solver. Various turbulent models including a transitional SST were implemented to observe a dynamic stall as well as cruise characteristics. Also, different mesh moving methods were evaluated. Flow hysteresis which causes dynamic stall was investigated through flow field investigations.

  • PDF

사각관의 수치 모델링 및 동적 붕괴 해석 (The Numerical Modelling and Dynamic Collapse Analysis of the Rectangular Tube)

  • 강신유;한동철
    • 한국자동차공학회논문집
    • /
    • 제1권2호
    • /
    • pp.42-48
    • /
    • 1993
  • In this paper, dynamic collapse behavior of the rectangular tube under impact loading is anlayzed using nonlinear finite element method of shell element. In case of shell element formulation using corotational element coordinates system, dynamic collapse behavior is analyzed without initial imperfection, and with initial imperfection. This paper reveals that the collapse of a rectangular tue without initial imperfection is caused by an error of transformation of the corotational coordinates system.

  • PDF

틸팅열차의 주행안전성과 고저틀림의 상관성 분석 (Characteristics of the Running behavior and Safety for Tilting train due to Vertical Alignment)

  • 최일윤;엄주환;임윤식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1937-1942
    • /
    • 2010
  • Vehicle dynamic behavior should be investigated to establish the track irregularity criteria because they have an impact on vehicle dynamic behavior. The tilting train which have been developed in Korea will be operated on the conventional line. Therefore, it should be checked that the track irregularity criteria of conventional line is still available for the new vehicle. In this paper, the influence of vertical alignment on running behavior and safety for tilting train was instigated by numerical analysis. The wavelength and amplitude of vertical alignment were considered in scenario of this numerical analysis. This research is based on just numerical analysis and the final result which include measurement will be published in the future.

  • PDF

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.