• 제목/요약/키워드: Dynamic neural network

검색결과 791건 처리시간 0.026초

Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain

  • Ko, Ili;Chambers, Desmond;Barrett, Enda
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.574-584
    • /
    • 2019
  • A new Mirai variant found recently was equipped with a dynamic update ability, which increases the level of difficulty for DDoS mitigation. Continuous development of 5G technology and an increasing number of Internet of Things (IoT) devices connected to the network pose serious threats to cyber security. Therefore, researchers have tried to develop better DDoS mitigation systems. However, the majority of the existing models provide centralized solutions either by deploying the system with additional servers at the host site, on the cloud, or at third party locations, which may cause latency. Since Internet service providers (ISP) are links between the internet and users, deploying the defense system within the ISP domain is the panacea for delivering an efficient solution. To cope with the dynamic nature of the new DDoS attacks, we utilized an unsupervised artificial neural network to develop a hierarchical two-layered self-organizing map equipped with a twofold feature selection for DDoS mitigation within the ISP domain.

회귀신경망을 이용한 음성인식에 관한 연구 (A Study on Speech Recognition using Recurrent Neural Networks)

  • 한학용;김주성;허강인
    • 한국음향학회지
    • /
    • 제18권3호
    • /
    • pp.62-67
    • /
    • 1999
  • 본 논문은 회귀신경망을 이용한 음성인식에 관한 연구이다. 예측형 신경망으로 음절단위로 모델링한 후 미지의 입력음성에 대하여 예측오차가 최소가 되는 모델을 인식결과로 한다. 이를 위해서 예측형으로 구성된 신경망에 음성의 시변성을 신경망 내부에 흡수시키기 위해서 회귀구조의 동적인 신경망인 회귀예측신경망을 구성하고 Elman과 Jordan이 제안한 회귀구조에 따라 인식성능을 서로 비교하였다. 음성DB는 ETRI의 샘돌이 음성 데이터를 사용하였다. 그리고, 신경망의 최적모델을 구하기 위하여 예측차수와 은닉층 유니트 수의 변화에 따른 인식률의 변화와 문맥층에서 자기회귀계수를 두어 이전의 값들이 문맥층에서 누적되도록 하였을 경우에 대한 인식률의 변화를 비교하였다. 실험결과, 최적의 예측차수, 은닉층 유니트수, 자기회귀계수는 신경망의 구조에 따라 차이가 나타났으며, 전반적으로 Jordan망이 Elman망보다 인식률이 높았으며, 자기회귀계수에 대한 영향은 신경망의 구조와 계수값에 따라 불규칙하게 나타났다.

  • PDF

자기 조직화 맵을 이용한 강화학습 제어기 설계 (Design of Reinforcement Learning Controller with Self-Organizing Map)

  • 이재강;김일환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.353-360
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and environment as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to partition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum on the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

동적자소분할과 신경망을 이용한 인쇄체 한글 문자인식기에 관한 연구 (A Study on Printed Hangeul Recognition with Dynamic Jaso Segmentation and Neural Network)

  • 이판호;장희돈;남궁재찬
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2133-2146
    • /
    • 1994
  • 본 논문에서는 한글의 동적자소분할 방법과 자소분할 결과 얻어진 가변분할 망눈으로부터 특징벡터를 추출해 신경망에 입력함으로써 문자를 인식하는 방법을 제안한다. 먼저, 각 문자에서 4방향 기여도와 $8\pm8$망눈을 사용하여 256차원의 특징벡터를 구한 후, 신경망에 의해 한글을 6형식으로 분류한다. 분류된 결과를 바탕으로 모음의 통계적인 위치정보와 문자의 구조적인 정보를 이용하여 각 문자를 자소 단위로 분할한다. 분할된 자소의 크기에 따라 가변적인 크기를 갖는 망눈을 구성하고 특징벡터를 추출해 자소인식 신경망에 입력함으로써 문자인식을 행한다. 4개의 서체(3개의 서체는 학습, 1개는 인식실험), KS C 5601내의 2350자의 문자를 대상으로 실험한 결과 학습에 사용된 서체에 대해서는 97%이상, 나머지 한 서체에 대해서는 94% 이상의 인식률을 나타내 제안된 방법의 유효성을 보였다.

  • PDF

지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측 (Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks)

  • 최한고
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.139-147
    • /
    • 2003
  • 동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(CRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 CRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술 (Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems)

  • 조현철;심광열
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

ATM 망에서 뉴럴 네트워크를 이용한 적응 폭주제어 (The Adaptive Congestion Control Using Neural Network in ATM network)

  • 이용일;김영권
    • 전기전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.134-138
    • /
    • 1998
  • 트래픽의 통계적 변동과 고도의 시변 특성 때문에, 최소의 반응시간을 가지고 고도의 동적인 기술과 적응 그리고 학습능력을 요구하는 네트워크의 자원으로 관리하도록 한다. 뉴럴 네트워크는 ATM 셀 도착율과 큐 길이를 정규화시키며, 그것은 적응 학습 알고리즘을 가지고, ATM 네트워크에서 발생되는 특주를 방지하기 위한 방법을 연구한다.

  • PDF

계층적 Hopfield 신경 회로망을 이용한 Optical Flow 추정 (Optical Flow Estimation Using the Hierarchical Hopfield Neural Networks)

  • 김문갑;진성일
    • 전자공학회논문지B
    • /
    • 제32B권3호
    • /
    • pp.48-56
    • /
    • 1995
  • This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.

  • PDF

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.