• Title/Summary/Keyword: Dynamic neural network

Search Result 791, Processing Time 0.03 seconds

Isolated Digit Recognition Combined with Recurrent Neural Prediction Models and Chaotic Neural Networks (회귀예측 신경모델과 카오스 신경회로망을 결합한 고립 숫자음 인식)

  • Kim, Seok-Hyun;Ryeo, Ji-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.129-135
    • /
    • 1998
  • In this paper, the recognition rate of isolated digits has been improved using the multiple neural networks combined with chaotic recurrent neural networks and MLP. Generally, the recognition rate has been increased from 1.2% to 2.5%. The experiments tell that the recognition rate is increased because MLP and CRNN(chaotic recurrent neural network) compensate for each other. Besides this, the chaotic dynamic properties have helped more in speech recognition. The best recognition rate is when the algorithm combined with MLP and chaotic multiple recurrent neural network has been used. However, in the respect of simple algorithm and reliability, the multiple neural networks combined with MLP and chaotic single recurrent neural networks have better properties. Largely, MLP has very good recognition rate in korean digits "il", "oh", while the chaotic recurrent neural network has best recognition in "young", "sam", "chil".

  • PDF

High Performance Speed Control of IPMSM Drive using Recurrent FNN Controller (순환 퍼지뉴로 제어기를 이용한 IPMSM 드라이브의 고성능 속도제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1700-1707
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. Since the fuzzy neural network(FNN) is recognized general approximate method to control non-linearities and uncertainties, the development of FNN control systems have also grown rapidly. The FNN controller is compounded of fuzzy and neural network. It has an advantage that is the robustness of fuzzy control and the ability to adapt of neural network. However, the FNN has static problem due to their feed-forward network structure. This paper proposes high performance speed control of IPMSM drive using the recurrent FNN(RFNN) which improved conventional FNN controller. The RFNN has excellent dynamic response characteristics because of it has internally feed-back structure. Also, this paper proposes speed estimation of IPMSM drive using ANN. The proposed method is analyzed and compared to conventional FNN controller in various operating condition such as parameter variation, steady and transient states etc.

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

A Study on the State Space Identification Model of the Dynamic System using Neural Networks (신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델에 관한 연구)

  • 이재현;강성인;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.

  • PDF

The State Space Identification Model of the Dynamic System using Neural Networks (신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델)

  • 이재현;탁환호;이상배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.442-448
    • /
    • 2000
  • The conventional control of dynamic systems needs accurate mathematical modeling of control systems. But the modeling of dynamic systems require very complex computation process due to complex state equation and many control parameters. Accordingly this paper proposes a state space identification model of the dynamic system using neural networks. The Gauss-Newton method is used to train the proposed neural network and the effectiveness of proposed method is verified through the computer simulation of the Seesaw system identification problem.

  • PDF

An Application of Kohonen Neural Networks to Dynamic Security Assessment (전력계통 동태 안전성 평가에 코호넨 신경망 적용 연구)

  • Lee, Gwang-Ho;Park, Yeong-Mun;Kim, Gwang-Won;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.253-258
    • /
    • 2000
  • This paper presents an application of Kohonen neural networks to assess the dynamic security of power systems. The dynamic security assessment(DSA) is an important factor in power system operation, but conventional techniques have not achieved the desired speed and accuracy. The critical clearing time(CCT) is an attribute which provides significant information about the quality of the post-fault system behaviour. The function of Kohonen networks is a mapping of the pre-fault system conditions into the neurons based on the CCTs. The power flow on each line is used as the input data, and an activated output neuron has information of the CCT of each contingency. The trajectory of the activated neurons during load changes can be used in on-line DSA efficiently. The applicability of the proposed method is demonstrated using a 9-bus example.

  • PDF

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

Evolving Neural Network for Realtime Learning Control (실시간 학습 제어를 위한 진화신경망)

  • 손호영;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.531-531
    • /
    • 2000
  • The challenge is to control unstable nonlinear dynamic systems using only sparse feedback from the environment concerning its performance. The design of such controllers can be achieved by evolving neural networks. An evolutionary approach to train neural networks in realtime is proposed. Evolutionary strategies adapt the weights of neural networks and the threshold values of neuron's synapses. The proposed method has been successfully implemented for pole balancing problem.

  • PDF

Design of Pitch Limit Detection Algorithm for Submarine (잠수함의 종동요각 한계예측 알고리즘 설계)

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.134-140
    • /
    • 2016
  • An envelope protection system is a control system that allows a submarine to operate freely using its own operational envelope without exceeding the structural limit, dynamic limit, and control input limit. In this paper, an envelope protection system for the pitch angle of a submarine is designed using a dynamic trim algorithm. A linear quadratic regulator and artificial neural network are used for the true dynamics approximation. A submarine maneuvering simulation program developed using experimental data is used to validate the designed envelope protection system. Simulation results show the effectiveness of the designed envelope protection system.

A STUDY OF PROCESS PARAMETER MONITORING AND INTELLIGENT QUALITY ESTIMATION DURING RESISTANCE SPOT WELDING

  • Kim, Taehyung;Yongjun Cho;Kim, Yongjae;Sehun Rhee
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.330-335
    • /
    • 2002
  • Resistance spot welding is one of the most widely used processes in sheet metal fabrication. Quality assurance of welding has been important to increase the productivity. In this study, weld quality estimation using primary circuit dynamic resistance applied to the in-process real-time systems. For quality estimation, factors relating to quality were extracted from the dynamic resistance, measured in the timer. The relationship between these factors and weld quality was determined through a artificial neural network model. This method has the advantage over the conventional one, such as obtaining the quality information without the use of extra devices.

  • PDF