• Title/Summary/Keyword: Dynamic neural network

Search Result 791, Processing Time 0.028 seconds

Development of In process Condition Monitoring System on Turning Process using Artificial Neural Network. (신경회로망 모델을 이용한 선삭 공정의 실시간 이상진단 시스템의 개발)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.14-21
    • /
    • 1998
  • The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System. This paper presents a method of detecting the state of cutting tool in turning process, by using Artificial Neural Network. In order to sense the state of cutting tool. the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper. It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network. The proposed monitoring system shows a good recogniton rate for the different cutting conditions.

  • PDF

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

Speed control of vector-controlled BLDC motor using Neural Network (신경회로망을 이용한 벡터제어 BLDC 전동기의 속도제어)

  • Cho, Sung-Kuen;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1126-1129
    • /
    • 2000
  • The equivalent transformation of a brushless DC motor into an separately exited DC motor has been possible with the vector control technique. Vector control is an effective technique for controlling variable speed drives of brushless DC motors. Conventional vector controllers, however, suffer from electrical machine parameter variations because these controllers depend on the parameters. This paper presents the vector control of brushless DC motor using a neural network. In the proposed method, a neural network is employed as on-line estimator of the nonlinear dynamic equations of brushless DC motor. The neural network based vector controller has the advantage of robustness against machine parameter variations as compared with conventional vector controller The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

A Control Method of DC Servo Motor Using a Multi-Layered Neural Network (다층 신경회로망을 이용한 DC Servo Motor 제어방법)

  • Kim, S.W.;Kim, J.S.;Ryou, J.S.;Lee, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.855-858
    • /
    • 1995
  • A neural network has very simple construction (input, output and connection weight) and then it can be robusted against some disturbance. In this paper, we proposed a neuro-controller using a Multi-Layered neural network which is combined with PD controller. The proposed neuro-controller is learned by backpropagation learning rule with momentum and neuro-controller adjusts connection weight in neural network to make approximate dynamic model of DC Servo motor. Computer Simulation results show that the proposed neuro-controller's performance is better than that of origianl PD controller.

  • PDF

Modeling of Ozone Prediction System using Polynomial Neural Network (다항식 신경회로망에 의한 오존농도 예측모델)

  • Kim, T.H.;Kim, S.S.;Lee, J.B.;Kim, Y.K.;Kim, S.D.;Kim, I.T.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2863-2865
    • /
    • 1999
  • In this paper we present the modeling of ozone prediction system using polynomial neural network. The Polynomial Neural Network is a useful tool for data learning, nonlinear function estimation and prediction of dynamic system. The mechanism of ozone concentration is highly complex, nonlinear, nonstationary. The purposed method shows that the prediction to the ozone concentration based upon a polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation.

  • PDF

Neural Robust Control for Perturbed Crane Systems

  • Cho Hyun-Cheol;Fadali M.Sami;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.591-601
    • /
    • 2006
  • In this paper, we present a new control methodology for perturbed crane systems. Nonlinear crane systems are transformed to linear models by feedback linearization. An inverse dynamic equation is applied to compute the system PD control force. The PD control parameters are selected based on a nominal model and are therefore suboptimal for a perturbed system. To achieve the desired performance despite model perturbations, we construct a neural network auxiliary controller to compensate for modeling errors and disturbances. The overall control input is the sum of the nominal PD control and the neural auxiliary control. The neural network is iteratively trained with a perturbed system until acceptable performance is attained. We apply the proposed control scheme to 2- and 3-degree-of-freedom (D.O.F.) crane systems, with known bounds on the payload mass. The effectiveness of the control approach is numerically demonstrated through computer simulation experiments.

Detection of Broken Bars in Induction Motors Using a Neural Network

  • Moradian M.;Ebrahimi M.;Danesh M.;Bayat M.
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.245-252
    • /
    • 2006
  • This paper presents a method based on neural networks to detect the broken rotor bars and end rings of squirrel cage induction motors. At first, detection methods are studied, and then traditional methods of fault detection and dynamic models of induction motors by using winding function model are introduced. In this method, all of the stator slots and rotor bars are considered, thus the performance of the motor in healthy situations or breakage in each part can be checked. The frequency spectrum of current signals is derived by using Fourier transformation and is analyzed in different conditions. In continuation, an analytical discussion and a simple algorithm are presented to detect the fault. This algorithm is based on neural networks. The neural network has been trained by using information of a 1.1 KW induction motor. This system has been tested with a different amount of load torque, and it is capable of working on-line and of recognizing all normal and ill conditions.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Short-term Electric Load Forecasting in Winter and Summer Seasons using a NARX Neural Network (NARX 신경망을 이용한 동·하계 단기부하예측에 관한 연구)

  • Jeong, Hee-Myung;Park, June Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1001-1006
    • /
    • 2017
  • In this study the NARX was proposed as a novel approach to forecast electric load more accurately. The NARX model is a recurrent dynamic network. ISO-NewEngland dataset was employed to evaluate and validate the proposed approach. Obtained results were compared with NAR network and some other popular statistical methods. This study showed that the proposed approach can be applied to forecast electric load and NARX has high potential to be utilized in modeling dynamic systems effectively.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.